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ABSTRACT
Temporal action alignment aims at segmenting videos into clips
and tagging each clip with a textual description, which is an im-
portant task of video semantic analysis. Most existing methods,
however, rely on supervised learning to train their alignment mod-
els, whose applications are limited because of the common insuffi-
ciency issue of labeled videos. To mitigate this issue, we propose a
weakly-supervised temporal action alignment method based on a
novel computational optimal transport technique called unbalanced
spectral fused Gromov-Wasserstein (US-FGW) distance. Instead of
using videos with known clips and corresponding textual tags, our
method just needs each training video to be associated with a set
of (unsorted) texts while does not require the fine-grained corre-
spondence between the frames and the texts. Given such weakly-
supervised video-text pairs, our method trains the representation
models of the video frames and the texts jointly in a probabilistic or
deterministic autoencoding architecture and penalizes the US-FGW
distance between the distribution of visual latent codes and that of
textual latent codes. We compute the US-FGW distance efficiently
by leveraging the Bregman ADMM algorithm. Furthermore, we
generalize classic contrastive learning framework and reformulate
it based on the proposed US-FGW distance, which provides a new
viewpoint of contrastive learning for our problem. Experimental
results show that our method and its variants outperform state-
of-the-art weakly-supervised temporal action alignment methods,
whose results are even comparable to those derived by supervised
learning methods on some specific evaluation measurements. The
code is available at https://github.com/hhhh1138/Temporal-Action-
Alignment-USFGW.
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1 INTRODUCTION
Temporal action alignment is an important video understanding
task, which aims at tagging video clips with textual descriptions
according to the semantics of the corresponding scenarios. This
task can be treated as a fine-grained video tagging problem — in-
stead of tagging the whole video with a single textual description,
temporal action alignment achieves clip/frame-level tagging, which
assigns different texts to the clips of different action scenarios. Solv-
ing this task helps us understand the time-varying semantics of
videos and thus is beneficial for many downstream applications, e.g,
video segmentation [21, 52, 66], video retrieval [14, 18, 61], video
classification [22, 38], anomaly detection [13, 46], video summary
and the associated key frame detection [3, 10].

Generally, existing temporal action alignment methods can be
coarsely categorized into two types. Given a set of videos and
their associated texts, the methods of the first type, e.g., the works
in [45, 69], treat the texts as the labels of the video frames and
formulates the task as a classification problem. On the other hand,
the methods of the second type, e.g., Moment Context Network
(MCN) [1] and Taco [68], learn representationmodels for both video
frames and their texts and formulate the task as a matching problem
in a latent space. However, both of the above two methodologies
depend on supervised learning and require fine-grained labeled
videos (i.e., each frame is labeled by a textual description), while
the frame-level video annotation is always time-consuming and

https://orcid.org/0000-0003-1136-8903
https://github.com/hhhh1138/Temporal-Action-Alignment-USFGW
https://github.com/hhhh1138/Temporal-Action-Alignment-USFGW
https://doi.org/10.1145/3503161.3548067
https://doi.org/10.1145/3503161.3548067
https://doi.org/10.1145/3503161.3548067


MM ’22, October 10–14, 2022, Lisboa, Portugal Dixin Luo, Yutong Wang, Angxiao Yue, & Hongteng Xu

Set of 
Descriptions
Add Flour

Add Milk
Add Egg

Whisk

Flip Pancake

  Sequence 
  of Frames

……

Visual Encoder

Visual Decoder

Textual
Decoder

Textual
Encoder

Textual
Reconstruction

Loss

Visual Reconstruction Loss

Contrastive Learning of
Spectral Unbalanced

FGW Distance

Optimal Transport between 
Visual and Textual Latent Codes 

Irrelavant 
Descriptions

Flip Egg

Add Butter

Add Water

Figure 1: An illustration of our method. In the latent space
(the green box), the latent codes of frames and positive texts
are represented as blue and red dots, while the latent codes
of irrelevant (negative) texts are represented as red circles.

expensive. As a result, the feasibility and the scalability of such
supervised methods become questionable in practice.

Recently, some efforts have been made to reduce the require-
ment of fine-grained labels. For example, the transcript-supervised
methods in [12, 33, 39, 49] only need each video to be associated
with a sequence of texts while do not require the correspondence
between the frames and the texts. In such a situation, the temporal
action alignment problem is reformulated as a video segmentation
problem, i.e., finding the clips corresponding to the texts. However,
this labeling strategy requires to preserve the order information of
the texts, so that its efficiency degrades a lot for the videos with
repeated actions and frequent action changes. To overcome this
challenge, the set-supervised methods [17, 34, 35, 48] are proposed,
which just assign each video with a set of (unsorted) texts and aim
at matching each frame with a text in the set. Such set-supervised
methods, however, often lead to sub-optimal performance because
of the lack of order information. Specifically, they often match the
set of frames with that of texts empirically based on the pairwise
distance between each frame and each text [6]. Without considering
the global matching between the two sets, the matching results
are often undesired, especially for the videos containing lots of
semantically-meaningless background frames.

To improve the above set-supervised paradigm, in this work, we
propose a new and solid weakly-supervised temporal action align-
ment method with the help of computational optimal transport.
As illustrated in Figure 1, given a set of frames and a set of texts,
our method applies two encoders to derive their latent codes and
matches them in the latent space. Two decoders are associated with
the encoders, which reconstruct/predict the raw features of the
frames and the texts from the latent codes. In particular, the latent
codes are learned via an autoencoding strategy — the encoders
and the decoders are learned jointly via minimizing reconstruc-
tion errors. Besides learning two autoencoders, we compute the
unbalanced spectral fused Gromov-Wasserstein (US-FGW) distance
between the latent codes of frames and those of texts. Our US-FGW
distance considers the point-wise similarity and the pair-wise sim-
ilarity between the frames and the texts in the latent space. The
optimal transport matrix associated with the US-FGW distance is a

joint distribution of the latent codes and indicates the correspon-
dence between the frames and the texts. Based on the US-FGW
distance, we design a new contrastive learning loss to regularize
the learning of the autoencoders, which minimizes the US-FGW
distance of the frame set to its positive text set while penalizes the
distance to its negative text set.

In summary, the contributions of our work include: (𝑖) We pro-
vide a novel optimal transport-based solution to set-supervised
temporal action alignment, and the regularizers based on the US-
FGW distance lead to a new contrastive learning framework. (𝑖𝑖)
Leveraging the Bregman ADMM algorithm, we compute the US-
FGW distance efficiently. To our knowledge, it is the first attempt to
solve unbalanced optimal transport problems via Bregman ADMM.
(𝑖𝑖𝑖) We test our method on representative datasets and compare it
to state-of-the-art methods. Experimental results demonstrate the
effectiveness of our method.

2 RELATEDWORK
2.1 Video action alignment and tagging
As aforementioned, most existing temporal action alignment meth-
ods are based on supervised learning [27, 53, 54, 70, 71], in which
frame-level video annotations are used in the training. Because the
correspondence between frames and texts is known, these meth-
ods are designed to encode the explicit correspondence via various
sequential models, e.g., Markov chains [27, 30], local filters [23, 50],
temporal convolutional networks (TCNs) [16, 29, 36, 55], and recur-
rent neural networks (RNNs) [54, 70, 71]. However, the insufficiency
and the expensiveness of frame-level annotated videos limit the ap-
plications of these supervised methods. To solve this problem, many
weakly-supervised methods learn their video action alignment mod-
els based on coarsely-labeled videos. For the transcript-supervised
methods that require the sequence of actions (textual descriptions),
they often treat the actions as the unknown latent codes of the cor-
responding video frame sequence and build hierarchical inference
models, e.g., the hidden Markov models (HMMs) [28, 33, 49] and
their neural network-based variants [12, 39, 47].

In a more challenging weakly-supervised setting, in which only
a set, rather than a sequence of actions is available, the temporal
action alignment problem becomes a highly-noisy matching prob-
lem across different domains. Facing the set-supervised learning
problem, Richard et al. [48] considered three granularity models for
video context, length, and frame information, respectively, which
reduces the search space of alignment maps significantly. The work
in [17] proposed a network to divide a video into small action-
consistent clips and estimate its length and the corresponding action
label accordingly. The work in [34] proposed a new set-constrained
Viterbi algorithm, generating the action segmentation via maxi-
mizing the posterior (MAP) of the HMM model. More recently, the
work in [35] improves the action alignment results by formulating
a more effective differentiable approximation to the NP-hard match-
ing problem. Different from the above methods, we consider
the set-supervised temporal action alignment problem in
the perspective of computational optimal transport, which
leads to a pair of autoencoders with a contrastive regularizer
driven by our US-FGW distance.
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2.2 Optimal transport-based matching methods
The computational optimal transport (OT) methods have been
widely used to solve various matching problems [43], e.g., dis-
tribution comparison [9], point cloud registration [5], sequence
alignment [7, 72], and so on. Essentially, given two distributions,
the optimal transport distance between them corresponds to learn-
ing an optimal transport plan to minimize the cost of changing one
distribution to the other. When the cost is defined as norm-induced
distance (e.g., Euclidean distance), the OT distance is specialized as
the so-called “Wasserstein distance” [43].

Many challenging machine learning tasks can be solved via min-
imizing the OT distance. When training high-dimensional genera-
tive models, given the data distribution and the model distribution,
minimizing their Wasserstein distance directly leads to the Wasser-
stein autoencoders [11, 58], while maximizing the Kantorovich dual
form of the Wasserstein distance leads to the Wasserstein genera-
tive adversarial network (WGAN) [2]. For multi-modal data, e.g.,
the visual frames and the textual descriptions in our task, the work
in [67] achieves optimal transport-based domain adaptation. The
work in [37] establishes dense correspondences across semantically
similar images based on an optimal transport-based framework.

For the structured data like graphs [8] or the point clouds [44]
with complex intrinsic structures, a kind of optimal transport dis-
tances called Gromov-Wasserstein (GW) distance [41] has shown
its potentials in many matching problems. In particular, given sam-
ple pairs from different modalities (or sources), the GW distance
compares the sample pairs and aims at finding an optimal trans-
port between the samples such that the relational distance between
the sample pairs is minimized. Based on the GW distance, the
fused Gromov-Wasserstein distance (FGW) distance is proposed
in [57], which combines the GW distance with the classic Wasser-
stein distance and achieves encouraging performance on graph
and set matching [63–65]. The benefits of the FGW distance
motivates us to design its variant and propose an optimal
transport-based framework for weakly-supervised temporal
action alignment.

3 PROPOSED METHOD
3.1 Problem statement
Suppose that we have a set of videos and associated textual de-
scriptions of actions, denoted as D = {(V𝑛,W𝑛)}𝑁𝑛=1. Here,V𝑛 =

{𝑣𝑖,𝑛}𝐼𝑛𝑖=1 represents the 𝐼𝑛 frames of the 𝑛-th video, which corre-
sponds to different actions happening in the video, andW𝑛 =

{𝑤 𝑗,𝑛}𝐽𝑛𝑗=1 represents the 𝐽𝑛 textual descriptions of the actions as-
sociated to the 𝑛-th video. As aforementioned, this dataset leads to
a set-based weakly-supervised setting — although the video and
the text set are paired, the correspondence between the frames (i.e.,
the 𝑣𝑖,𝑛 ∈ V𝑛) and the texts (i.e., the𝑤 𝑗,𝑛 ∈ W𝑛) is unknown.

Our weakly-supervised temporal action alignment task aims at
not only learning the representation models for the frames and the
texts, respectively, but also matching their representations in the
latent space. Therefore, we need to find a new alignment method
that is robust to the uncertainty of the visual-textual correspon-
dence and the interferences caused by the meaningless background
frames. We will show that this task can be achieved with the help of

a new computational optimal transport distance called unbalanced
spectral fused Gromov-Wasserstein distance.

3.2 Autoencoding with FGW regularization
Our alignment method matches the frames with the texts according
to their representations in a latent space (a.k.a., the latent codes).
We consider an autoencoding architecture to learn the latent codes.
For the set of framesV , we denote 𝑓𝑣 : V ↦→ R𝐷 as the encoder
representing each frame feature as a latent code, and 𝑔𝑣 : R𝐷 ↦→ V
as the decoder generating frames from latent codes. Similarly, for
the texts in the setW, we denote 𝑓𝑤 :W ↦→ R𝐷 as the encoder
representing each textual description as a latent code, and 𝑔𝑤 :
R𝐷 ↦→ W as the decoder predicting texts from latent codes.

GivenV andW, the above two encoders project them to the
latent space and obtain two sets of latent codes as 𝑽 = 𝑓𝑣 (V) ∈
R𝐼×𝐷 and𝑾 = 𝑓𝑤 (W) ∈ R𝐽 ×𝐷 , respectively. For the latent codes,
we would like to ensure that

1. Representation power: The latent codes should cover suf-
ficient visual and textual information of the raw data.

2. Semantic matching: The latent codes of semantically simi-
lar frames and texts should be close to each other.

The first key point is often achieved via minimizing the recon-
struction errors of the frames and the texts in the autoencoding
framework, and this learning strategy has been commonly used in
many generative modeling methods, e.g., the Wasserstein autoen-
coders in [11, 58, 64]. The second key point requires us to match the
visual and textual latent codes, which can be achieved by optimal
transport-based methods.

Wasserstein Distance. Given 𝑽 ∈ R𝐼×𝐷 and 𝑾 ∈ R𝐽 ×𝐷 , a
straightforward way to measure their difference is computing the
sample-based Wasserstein distance [9] between them:

𝑑w (𝑽 ,𝑾 ) = min
𝑻 ∈Π (𝒖,𝝁)

E(𝒗,𝒘)∼𝑻 [𝑑 (𝒗,𝒘)] = min
𝑻 ∈Π (𝒖,𝝁)

⟨𝑫𝑣𝑤 , 𝑻 ⟩. (1)

Here,𝑫𝑣𝑤 = [𝑑 (𝒗𝑖 ,𝒘 𝑗 )] ∈ R𝐼×𝐽 is a distancematrix, whose element
𝑑 (𝒗𝑖 ,𝒘 𝑗 ) represents the distance between the latent code of the 𝑖-
th frame and that of the 𝑗-th word. For the Wasserstein distance,
we often apply the Euclidean distance matrix. Π(𝒖, 𝝁) = {𝑻 ≥
0|𝑻1𝐽 = 𝒖, 𝑻𝑇 1𝐼 = 𝝁} is the set of doubly-stochastic matrix, whose
marginals must be on the Simplex, i.e., 𝒖 ∈ Δ𝐼−1 and 𝝁 ∈ Δ𝐽 −1.
Generally, we set the marginals to be uniform, i.e., 𝒖 = 1

𝐼
1𝐼 and

𝝁 = 1
𝐽
1𝐽 . The optimal transport matrix corresponding to 𝑑w (𝑽 ,𝑾 ),

denoted as 𝑻 ∗ = [𝑡∗
𝑖 𝑗
], is the optimal joint distribution of the frames

and the texts that minimizing the expectation of the distance, as
shown in (1). The elements of 𝑻 ∗ can be explained as the coherency
probability for each frame-text pair, and thus, we can match the the
frames with the texts, i.e., for each frame 𝑣𝑖 ∈ V , the corresponding
textual description𝑤 𝑗 ∈ W is determined by 𝑗 = argmax𝑗 𝑡∗𝑖 𝑗 .

Gromov-Wasserstein Distance. Besides the aboveWasserstein
distance, the Gromov-Wasserstein (GW) distance is often applied
to compute the optimal transport matrix as well. Given the latent
codes 𝑽 and𝑾 , the GW distance between them is defined as

𝑑gw (𝑽 ,𝑾 ) = min
𝑻 ∈Π (𝒖,𝝁)

E(𝒗,𝒗′,𝒘,𝒘′)∼𝑻⊗𝑻 [|𝑑 (𝒗, 𝒗 ′) − 𝑑 (𝒘,𝒘 ′) |2]

⇒min𝑻 ∈Π (𝒖,𝝁) −⟨𝑫𝑣𝑻𝑫𝑇𝑤 , 𝑻 ⟩.
(2)
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Figure 2: An illustration of the FGW distance. Given the
textual and the visual latent codes, the FGW distance not
only considers their point-wise distance (the blue arrows)
but also considers the relational distance between “Flying”
and related concept “Jumping” (the red arrows). Even if the
point-wise distance is large, the relational distance can be
small (i.e., the lengths of the black dotted lines are similar).

Here, the difference between different pairs |𝑑 (𝒗, 𝒗 ′) − 𝑑 (𝒘,𝒘 ′) |2
is also called relational distance [62]. As shown in (2), the GW
distance corresponds to an optimization problem of the transport
matrix 𝑻 that minimizes the expectation of the relational distance,
where the Kronecker product 𝑻 ⊗ 𝑻 works as the joint distribution
for the pair of frames and that of texts, i.e., (𝒗, 𝒗 ′ ∈ 𝑽 × 𝑽 ) and
(𝒘,𝒘 ′ ∈ 𝑾 ×𝑾 ). According to the work in [44, 62], the objective
function can be reformulated in a matrix form −⟨𝑫𝑣𝑻𝑫𝑇𝑤 , 𝑻 ⟩, where
𝑫𝑣 = [𝑑 (𝒗𝑖 , 𝒗 𝑗 )] ∈ R𝐼×𝐼 , and 𝑫𝑤 = [𝑑 (𝒘𝑖 ,𝒘 𝑗 )] ∈ R𝐽 ×𝐽 represent
the distance matrix of the visual latent codes and that of the textual
latent codes, respectively. Note that for the video frames, we can
impose their order information on 𝑫𝑣 : for each 𝑑 (𝒗𝑖 , 𝒗 𝑗 ) ∈ 𝑫𝑣 , we
have 𝑑 (𝒗𝑖 , 𝒗 𝑗 ) ← 𝑑 (𝒗𝑖 , 𝒗 𝑗 ) + _ℓ1 ( 𝑖𝐼 ,

𝑗
𝐼
), where ℓ1 (𝑎, 𝑏) = |𝑎 −𝑏 |, and

ℓ1 ( 𝑖𝐼 ,
𝑗
𝐼
) defines the distance between the normalized frame indices,

and _ ≥ 0 controls its significance.
Fused Gromov-Wasserstein Distance. Given two sets of la-

tent codes, the Wasserstein distance derives the optimal transport
matrix based on their point-wise comparisons, while the GW dis-
tance derives the optimal transport matrix based on their pair-wise
comparisons. Therefore, a natural extension of these two optimal
transport distances is considering them jointly, which leads to the
fused Gromov-Wasserstein (FGW) distance proposed in [57]:

𝑑fgw (𝑽 ,𝑾 ; 𝛽) = min
𝑻 ∈Π (𝒖,𝝁)

(1 − 𝛽)⟨𝑫𝑣𝑤 , 𝑻 ⟩︸               ︷︷               ︸
Wasserstein term

+ 𝛽 ⟨−𝑫𝑣𝑻𝑫𝑇𝑤 , 𝑻 ⟩︸              ︷︷              ︸
GW term

. (3)

In particular, the FGW distance is an optimization problem consist-
ing of a Wasserstein term and a GW term. It achieves a trade-off
between point-wise comparison and pair-wise comparison when
computing the optimal transport matrix, in which the significance
of the two terms is controlled by the hyperparameter 𝛽 ∈ [0, 1].

Note that this FGW distance is suitable for weakly-supervised
temporal action alignment because the matching of frames and
texts depends on not only the point-wise similarity between their
latent codes but also the structural or relational similarity between
them. Considering these two kinds of similarity jointly helps us
to suppress the semantic gap between the visual and the textual

information. As illustrated in Figure 2, the texts “Jumping” and
“Flying” may correspond to different videos, e.g., “Bungee Jumping”
and “Parachute Jumping”. The visual latent codes of the “Bungee
Jumping” video can be very different from those of the “Parachute
Jumping” video, so that the textual latent codes of “Jumping” and
“Flying” may not match well with both of them — when purely re-
lying on the Wasserstein term in (3), the text “Flying” (in red) may
be wrongly matched with the frame corresponding to “Jumping”
(in blue) in the “Parachute Jumping”. However, when considering
the pairwise relations (based on the GW term in (3)), the distance
between the texts “Jumping” and “Flying” in the latent space can be
similar to both the distance between the corresponding frames of
“Bungee Jumping” video and that between the frames of “Parachute
Jumping” video. As a result, the matching driven by the FGW dis-
tance is more robust.

Given 𝑁 paired frame-text sets {(V𝑛,W𝑛)}𝑁𝑛=1, a naïve strategy
is learning the autoencoders with the FGW-based regularizer:

min
𝑓𝑣 ,𝑔𝑣 ,𝑓𝑤 ,𝑔𝑤

∑︁
(V𝑛,W𝑛) ∈D

ℓ𝑣 (V𝑛, 𝑔𝑣 (𝑓𝑣 (V𝑛)))︸                   ︷︷                   ︸
Reconstruction loss of frames

+

ℓ𝑤 (W𝑛, 𝑔𝑤 (𝑓𝑤 (W𝑛)))︸                        ︷︷                        ︸
Reconstruction loss of words

+𝛾 𝑑fgw (𝑓𝑣 (V𝑛), 𝑓𝑤 (W𝑛); 𝛽)︸                           ︷︷                           ︸
FGW distance

,
(4)

where 𝑓𝑣 (V𝑛)) = 𝑽𝑛 ∈ R𝐼𝑛×𝐷 derives the latent codes of the 𝐼𝑛
frames in the video V𝑛 , and similarly, 𝑓𝑤 (W𝑛)) = 𝑾𝑛 ∈ R𝐽𝑛×𝐷
derives the latent codes of the 𝐽𝑛 texts in the setW𝑛 . The ℓ𝑣 and ℓ𝑤
are the metrics used to quantify the reconstruction errors of frames
and texts, respectively.

3.3 Unbalanced spectral FGW distance
According to our above analysis, (4) jointly considers the learning
and the matching of visual and textual latent codes. However, this
learning strategy still suffers from two potential issues: (𝑖) For the
videos with lots of meaningless background frames, we need to
match texts with a part of frames, while (4) does not have any
mechanisms to achieve such partial matching — for each 𝑑fgw term
in (4), it is often questionable to assume uniform marginal distri-
butions 𝝁 and 𝒖 and make each 𝑻 ∗ ∈ Π(𝝁, 𝒖). (𝑖𝑖) For the latent
codes with high dimensions, it is challenging to leverage the dis-
tance metric of the corresponding latent space because of the curse
of dimensionality, and as a result, the distance matrices 𝑫𝑣 , 𝑫𝑤 ,
and 𝑫𝑣𝑤 might be unreliable or indistinguishable. To resolve these
two issues, we improve the original FGW distance, proposing the
following unbalanced spectral FGW distance.

For each video, each text is generally associated with multiple
frames. However, on one hand, we do not know in advance that
howmany frames are matched with a single text. On the other hand,
many frames are meaningless background frames, which should
be not assigned to any texts. As a result, the marginal distributions
of the frames and the texts (i.e., the 𝒖 ∈ Δ𝐼−1 and 𝝁 ∈ Δ𝐽 −1 in (3)),
which indicate the significance of different frames and how many
frames are matched with a single text, respectively, are unavail-
able. In such a situation, the original FGW distance degrades to an
unbalanced FGW distance — the 𝒖 and 𝝁 are just the prior of the
marginals, and the marginals of the optimal transport are not equal
to them strictly. Furthermore, given the latent codes 𝑽 ’s and𝑾 ’s,
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instead of using the Euclidean distance to derive the corresponding
distance matrices (i.e., 𝑫𝑣𝑤 , 𝑫𝑣 , and 𝑫𝑤 ), we design kernel matri-
ces based on the latent codes and replace the distance matrices in
the FGW distance with them.

Taking the above two modifications into account, we obtain the
proposed unbalanced spectral FGW (US-FGW) distance:

𝑑us-fgw (𝑽 ,𝑾 ; 𝛽, 𝜏) =min𝑻 (1 − 𝛽)⟨−𝑲𝑣𝑤 , 𝑻 ⟩ + 𝛽 ⟨−𝑲𝑣𝑻𝑲𝑇𝑤 , 𝑻 ⟩

+ 𝜏
(
KL

(
𝑻1𝐽 ∥

1
𝐼
1𝐼

)
+ KL

(
𝑻𝑇 1𝐼 ∥

1
𝐽
1𝐽

) )
.

(5)

Here, 𝑲𝑣𝑤 , 𝑲𝑣 , and 𝑲𝑤 can be arbitrary kernel matrices derived
based on the latent codes, e.g. the RBF kernel, cosine similarity, and
so on. For the marginals of the transport matrix, instead of imposing
strict equality constraints, we add two regularizers to penalize
the KL-divergences between them and uniform distributions ( 1

𝐼
1𝐼

and 1
𝐽
1𝐽 ). The significance of the two regularizers is controlled

by the hyperparameter 𝜏 . The regularizers allow us to learn the
significance (i.e., 𝑻 ∗1𝐽 ) and the assignment of the frames (i.e., 𝑻 ∗)
while avoid trivial solutions (i.e., 𝑻 = 0).

Replacing the FGW distance in (4) with the US-FGW distance
in (5), we obtain the following learning problem:

min𝑓𝑣 ,𝑔𝑣 ,𝑓𝑤 ,𝑔𝑤
∑︁
(V𝑛,W𝑛) ∈D

ℓ𝑣 (V𝑛, 𝑔𝑣 (𝑓𝑣 (V𝑛)))+

ℓ𝑤 (W𝑛, 𝑔𝑤 (𝑓𝑤 (W𝑛))) + 𝛾𝑑us-fgw (𝑓𝑣 (V𝑛), 𝑓𝑤 (W𝑛); 𝛽, 𝜏) .
(6)

3.4 Contrastive learning based on US-FGW
For each frame setV , besides matching it with the corresponding
(positive) text setW, we can further consider its relation to a set
of negative texts (e.g., the texts irrelevant to the video), denoted as
W ′. In particular, besides penalizing the US-FGW distance between
𝑓𝑣 (V) and 𝑓𝑤 (W), we would like to encourage the US-FGW dis-
tance between the frame set and the negative word set in the latent
space. The above analysis motivates us to propose a contrastive
learning framework based on the US-FGW distance.

Generalization of classic contrastive learning. Take our
task as an example. Given a set of frames, the classic contrastive
learning methods like noise-contrastive estimation [19] maximizes
the difference between the conditional distribution of positive texts
and that of negative texts.

max𝑓𝑣 ,𝑓𝑤 EV∼𝑝D [EW∼𝑝P|V [𝑠 (𝑓𝑤 (W); 𝑓𝑣 (V))]−
EW′∼𝑝N|V [ℎ

∗ (𝑠 (𝑓𝑤 (W ′); 𝑓𝑣 (V)))]],
(7)

where 𝑝D represents the (empirical) distribution of training data,
𝑝P |V and 𝑝N|V represent the positive and the negative text distri-
butions conditioned on the frame setV . 𝑠 (·; ·) is a score function
indicating the similarity between the latent codes. ℎ∗ : R ↦→ R is a
conjugate function, whose formulation is determined by the final
activation layer of the score function 𝑠 .

Following the work in [42], we can explain the framework in (7)
as maximizing the expectation of the 𝑓 -divergence between 𝑝P |V
and 𝑝N|V . Specifically, when 𝑠 (𝒂; 𝒃) = − log(1+exp(−𝒂⊤𝒃)),ℎ∗ (𝑡)
becomes − log(1 − exp(𝑡)), and we can rewrite (7) as a mutual in-
formation maximization problem [20, 59]. When ℎ∗ is an identity
function, 𝑖 .𝑒 ., ℎ∗ (𝑡) = 𝑡 , (7) becomes a score matching framework
corresponding to the maximum mean discrepancy (MMD) [15, 32].

This explanation provides a way to generalize the contrastive learn-
ing framework in (7) — leveraging a valid (pseudo) metric of distri-
butions, we can achieve contrastive learning via maximizing the
expectation of the discrepancy between the positive distribution
and the negative one based on the metric, i.e.,

maxEV∼𝑝D [𝑑 (𝑝P |V , 𝑝N|V )], (8)

where 𝑑 represents the (pseudo) metric of the distributions.
The proposed US-FGW contrastive learning. In this work,

we take our US-FGW distance as the metric 𝑑 in (8). Moreover,
because our task involves two modalities, instead of maximizing
the discrepancy between the conditional distributions of positive
and negative texts, we shall focus more on the comparison between
the distributions of texts and frames. Therefore, leveraging the
triangle inequality of US-FGW distance,1 we can relax the objective
function in (8) and achieve contrastive learning via maximizing its
lower bound, i.e.,

EV∼𝑝D [𝑑us-fgw (𝑝P |V , 𝑝N|V )]
≥EV∼𝑝D [𝑑us-fgw (𝑝N|V , 𝑝V ) − 𝑑us-fgw (𝑝P |V , 𝑝V )],

(9)

where 𝑝V is the distribution of video frames in a set. For the right
side of the triangle inequality, we ignore the absolute operation
because the distance of the frames to their negative texts should
always be larger than the distance to the positive texts.

For the US-FGW distances in (9), we can obtain their sample-
based estimation given V ∼ 𝑝V ,W ∼ 𝑝P |V , andW ′ ∼ 𝑝N|V ,
e.g., the US-FGWdistance shown in (6). Considering this contrastive
learning strategy leads to the proposed learning task:

min𝑓𝑣 ,𝑔𝑣 ,𝑓𝑤 ,𝑔𝑤
∑︁
(V𝑛,W𝑛,W′

𝑛) ∈D

(
ℓ𝑣 (V𝑛, 𝑔𝑣 (𝑓𝑣 (V𝑛)))+

ℓ𝑤 (W𝑛, 𝑔𝑤 (𝑓𝑤 (W𝑛))) + 𝛾
(
𝑑us-fgw (𝑓𝑣 (V𝑛), 𝑓𝑤 (W𝑛); 𝛽, 𝜏)−

𝑑us-fgw (𝑓𝑣 (V𝑛), 𝑓𝑤 (W ′𝑛); 𝛽, 𝜏)
) )
.

(10)

Here, the last term weighted by the hyperparameter 𝛾 is the US-
FGW contrastive learning regularizer, which minimizes the US-
FGW distance of the frame set to the positive text set while maxi-
mizes its US-FGW distance to the negative text set.

4 LEARNING AND IMPLEMENTATIONS
4.1 Probabilistic or deterministic autoencoding
It should be noted that the learning framework in (10) is compat-
ible with both probabilistic and deterministic autoencoders. For
the probabilistic autoencoding model, like the variational autoen-
coder [25], the encoder outputs the mean and the logarithmic vari-
ance of the posterior distribution. In our model, given a frame
𝑣𝑖 ∈ V or a text𝑤 𝑗 ∈ W, the probabilistic autoencoding model is

Encoding: 𝒎𝑣𝑖 , log𝝈𝑣𝑖 = 𝑓𝑣 (𝑣𝑖 ), 𝒎𝑤𝑗
, log𝝈𝑤𝑗

= 𝑓𝑤 (𝑤 𝑗 ),
Decoding: 𝑔𝑣 (𝑓𝑣 (𝑣𝑖 )) = 𝑔𝑣 (𝒎𝑣𝑖 + 𝝈𝑣𝑖 ⊙ 𝝐),

𝑔𝑤 (𝑓𝑤 (𝑤 𝑗 )) = 𝑔𝑤 (𝒎𝑤𝑗
+ 𝝈𝑤𝑗

⊙ 𝝐),
(11)

where 𝝐 ∼ N(0, 𝑰𝐷 ) is a random vector obeying to a normal dis-
tribution. Applying the reparameterization trick, we can sample
the latent codes (i.e., 𝒗𝑖 = 𝒎𝑣𝑖 + 𝝈𝑣𝑖 ⊙ 𝝐 and𝒘 𝑗 = 𝒎𝑤𝑗

+ 𝝈𝑤𝑗
⊙ 𝝐)

1Although US-FGW is a pseudo-metric, it is easy to proof that it satisfies the triangle
inequality based on the method shown in [51, 57].
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and decode them. The reconstruction terms in (10) can be derived
based on the data reconstructed from the decoding results.

As shown in (11), the probabilistic encoding results of 𝐼 frames
and 𝐽 texts are two Gaussian mixture models, i.e., {N (𝒎𝑣𝑖 ,𝝈

2
𝑣𝑖
)}𝐼
𝑖=1

and {N (𝒎𝑤𝑖
,𝝈2
𝑤𝑖
)}𝐽
𝑗=1. Accordingly, the US-FGW distance in (5)

can be derived as a hierarchical optimal transport problem [40],
where the elements of the kernel matrices can be defined based on
Wasserstein distance between arbitrary two Gaussian components,
i.e., for 𝑲𝑣𝑤 = [𝑘𝑖 𝑗 ],

𝑘𝑖 𝑗 = exp
(
− 1
𝑏
𝑑2w (N (𝒎𝑣𝑖 ,𝝈

2
𝑣𝑖
),N(𝒎𝑤𝑗

,𝝈2
𝑤𝑗
))

)
= exp

(
− 1
𝑏
(∥𝒎𝑣𝑖 −𝒎𝑤𝑗

∥22 + ∥𝝈𝑣𝑖 − 𝝈𝑤𝑗
∥22)

)
,

(12)

where 𝑏 is the bandwidth of the kernel. The elements of 𝑲𝑣 and
𝑲𝑤 can be defined in the same way.

For the deterministic autoencoding model, like the Wasserstein
autoencoder [58], the encoder outputs latent codes of data directly
(i.e., 𝒗𝑖 = 𝑓𝑣 (𝑣𝑖 ) and 𝒘𝑖 = 𝑓𝑤 (𝑤𝑖 )). In such a situation, we can
reconstruct frames and texts directly by decoding the latent codes.
For the kernel matrices, we can derive them based on the latent
codes as well, e.g., for each𝑘𝑖 𝑗 ∈ 𝑲𝑣𝑤 ,𝑘𝑖 𝑗 = exp(− 1

𝑏
∥𝒗𝑖−𝒘 𝑗 ∥22), and

𝑲𝑣 and 𝑲𝑤 are defined in the same way. In summary, we have 𝑲 =

exp(− 1
𝑏
𝑫) in general, where𝑫 is theWasserstein distancematrix of

latent Gaussian components for the probabilistic autoencoder and
the Euclidean distance matrix of latent codes for the deterministic
autoencoder, respectively.

4.2 Nested alternating optimization
We solve the learning problem in (10) by a nested alternating opti-
mization. In particular, the outer loop corresponds to computing
the US-FGW distances and updating the autoencoders iteratively,
while the inner loop corresponds to updating the optimal trans-
port matrices and the corresponding auxiliary and dual variables
iteratively when computing the US-FGW distances.

In the inner loop, given current visual and textual autoencoders,
we first learn the optimal transport matrices for each pair of the
frame set and the text set. Different from most existing methods,
which solve optimal transport problems via the Sinkhorn scaling
algorithm [9, 56, 65], we apply the Bregman alternating direction
method of multipliers (B-ADMM) [60, 62] to compute the US-FGW
distance. In particular, we rewrite (5) in an equivalent format by
introducing three auxiliary variables 𝑺 , 𝒖 and 𝝁:

min𝑻 ,𝑺,𝒖,𝝁 (1 − 𝛽)⟨−𝑲𝑣𝑤 , 𝑻 ⟩ + 𝛽 ⟨−𝑲𝑣𝑺𝑲𝑇𝑤 , 𝑻 ⟩+

𝜏

(
KL(𝒖∥ 1

𝐼
1𝐼 ) + KL(𝝁∥

1
𝐽
1𝐽 )

)
𝑠 .𝑡 . 𝑻 = 𝑺, 𝑻1𝐽 = 𝒖, 𝑺𝑇 1𝐼 = 𝝁 .

(13)

These three auxiliary variables correspond to the optimal transport
matrix 𝑻 and its two marginals. This problem can be further rewrit-
ten in a Bregman-augmented Lagrangian form by introducing three
dual variables 𝒁 , 𝒛1, 𝒛2 for the three constraints in (13), respectively.
Applying an alternating optimization strategy, we update the pri-
mal, the auxiliary, and the dual variables iteratively. The detailed
algorithm is shown in Appendix A.

5 EXPERIMENTS
5.1 Implementation details
Baselines and variants of our US-FGW method. To demon-
strate the feasibility and effectiveness of our US-FGW method, we
compare it with state-of-the-art set-based weakly-supervised action
alignment methods, including Actionset [48], SCT [17], SCV [34],
ACV [35]. For a comprehensive study, we also use representative
transcript-supervisedmethods (𝑖 .𝑒 ., ISBA [12], NNV [49], CDFL [33],
TASL [39]) and the state-of-the-art attention based action localiza-
tion method (𝑖 .𝑒 ., UM [31]) as our baselines. To achieve ablation
study, we further consider the two variants of our US-FGWmethod
that solve (4) and (6), respectively.

Datasets. For each method, we consider three representative
temporal action alignment datasets in our experiments, including
Breakfast [26], Hollywood Extended [4] and CrossTask [73]. The
Breakfast dataset consists of 1,712 video sequences and 48 cook-
ing actions. Each video contains 6.9 actions on average, and has
7.3% background frames. The Hollywood Extended dataset contains
937 Hollywood movie clips with 16 actions. Each video contains
2.5 actions on average, while 60.9% of frames are background. The
CrossTask dataset consists of 2,552 videos and 80 actions. Each video
contains 14.4 actions on average, while 74.8% of frames are back-
ground. For a fair comparison, we following the feature engineering
and the data splitting used in previous works. For Breakfast and
Hollywood Extended, we use the 64-dimensional features provided
by [49]. For CrossTask dataset, we use the 64-dimensional features
provided by [39]. For Breakfast, we use 80% data for training and
the remaining 20% for testing. For Hollywood and CrossTask, we
follow the TASL [39]’s training/testing splitting manner, using 90%
for training and 10% for testing.

Model architecture and hyperparameter setting. For the
visual autoencoder, we apply a GRU as a feature extraction module
of frame sequences, and pass the frame features through a MLP
with two fully-connected (FC) layers. The dimension of the latent
code is 8. Given the visual latent codes, we reconstruct frame fea-
tures through a decoder consisting of two three FC layers. For the
textual autoencoder, the encoder is an embedding layer converting
action indices to latent codes, and the decoder is a MLP with two
FC layers, which predicts the probabilities of the actions. For the
two autoencoders, the adjacent FC layers are connected through
the ReLU activation layers, and their encoders are deterministic.2
Accordingly, the visual autoencoder takes the mean-square-error
(MSE) as its reconstruction loss, while the textual autoencoder takes
the cross-entropy loss as its reconstruction loss. The hyperparame-
ters of our algorithm are set as follows: the number of epochs is 2;
the learning rate is 0.0003; each batch contains the frames sampled
from one video, and the sampling rate is 1 frame per second; the
optimizer is Adam [24] with 𝛽1 = 0.5 and 𝛽2 = 0.999; the weight 𝛾
of the contrastive regularizer is 1.0; the bandwidth 𝑏 of the kernel is
0.1; the weight 𝛽 of the GW term is set to be 0.1; the weight 𝜏 of the
unbalanced regularizer is 0.01; the maximum number of B-ADMM
iterations is 3,000, and the weight 𝜌 is 1.0.

Evaluation. Following the work in [12, 33], we use the following
fourmeasurements to evaluate eachmethod. Themean-over-frames
2We found that using probabilistic encoders provides similar learning results, so we
only report the results of using deterministic encoders in the following experiments.
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Table 1: Comparisons for variousmethods on three datasets. The baselines are categorized according to the level of supervision.
For the methods with “∗”, their source codes are unavailable so that we quote their results from the references, and “-” means
that the corresponding results are not provided by the references.

Methods and Categories Breakfast Hollywood Extended CrossTask
Mof Mof-bg IoU IoD Mof Mof-bg IoU IoD Mof Mof-bg IoU IoD

ISBAED-TCN [12] 0.4548 0.2653 0.2790 0.4775 0.5553 0.4865 0.2228 0.3878 0.5174 0.5645 0.1869 0.2722
Transcript- ISBATCFPN [12] 0.4825 0.2560 0.2911 0.4972 0.5598 0.4826 0.2348 0.3958 0.5308 0.5739 0.1914 0.2706
Supervised NNV [49] 0.5404 0.5131 0.4415 0.5998 0.5656 0.4737 0.3195 0.4692 0.4132 0.1991 0.1154 0.1888

CDFL [33] 0.5940 0.5692 0.4391 0.6041 0.5982 0.6200 0.3514 0.5009 0.4248 0.2039 0.1256 0.2006
TASL [39] 0.6042 0.5842 0.4880 0.6405 0.6066 0.5551 0.3546 0.4959 0.5148 0.4130 0.1859 0.2841

Actionset [48] 0.2137 0.1614 0.0504 0.1272 0.3743 0.2111 0.0966 0.1833 0.2993 0.1144 0.0268 0.0476
SCT [17] 0.122 0.130 0.036 0.078 0.055 0.220 0.008 0.026 0.064 0.150 0.021 0.049

Set- ∗SCT [17] 0.2660 - - - - - - 0.1770 - - - -
Supervised ∗SCV [34] 0.3020 - - - - - - 0.1770 - - - -

∗ACV [35] 0.3340 - - - - - - 0.2090 - - - -
UM [31] 0.0383 0.0104 0.0315 0.0649 0.4053 0.2427 0.1845 0.2945 0.2053 0.1855 0.0437 0.1498

Proposed US-FGW 0.3357 0.3577 0.1160 0.1530 0.3840 0.4082 0.2307 0.4001 0.1853 0.1907 0.0720 0.1929

(Mof) is the average percentage of correctly-labeled frames. For the
video dominated by background frames, e.g., those in the Holly-
wood Extended and the CrossTask datasets, the mean-over-frames
without background (Mof-bg) records the average percentage of
correctly-labeled non-background frames, which is a more reason-
able measurement. Given the ground truth labels of the frames
𝐺𝑇 and their detected actions 𝐷 , we further compute the intersec-
tion over union (IoU) and the intersection over detection (IoD) as
𝐼𝑜𝑈 = |𝐺𝑇 ∩ 𝐷 | /|𝐺𝑇 ∪ 𝐷 |, and 𝐼𝑜𝐷 = |𝐺𝑇 ∩ 𝐷 | /|𝐷 |, respectively.

5.2 Comparison experiments
For each dataset, we compare our US-FGW method and its variants
with the baselines, including the set-supervised and the transcript-
supervised methods, on above four metrics. Since SCT [17] uses
I3D features as input to the model, for a fair comparison, we also
show the results of our replication of SCT by its released codes
when using IDT features, denoted as SCT. We list the averaged
performance of various methods in 5 trials in Table 1. The stan-
dard deviation of each method’s result is smaller than 0.005. As
a new set-supervised method, our US-FGW method outperforms
existing set-supervised methods in most situations. Especially for
the datasets with lots of meaningless background frames (i.e., Hol-
lywood Extended and CrossTask), our method achieves obvious
improvements on Mof-bg, IoU, and IoD, which means that it effec-
tively filters out background frames and thus predicts the actions
of the semantically-meaningful frames with higher accuracy. These
results demonstrate the rationality of using unbalanced optimal
transport to achieve partial matching between texts and frames.

It should be noted that our US-FGW method shrinks the gap
between the set-supervised methods and the transcript-supervised
methods. As shown in Table 1, the transcript-supervised methods
always work better than the set-supervised methods (including
ours) because they leverage the order information of texts in both
training and testing phases. However, for the challenging datasets
with lots of background frames, our US-FGW method is compa-
rable to the transcript-supervised methods on some evaluation
measurements. For example, for the Hollywood Extendd dataset,

Figure 3: Alignment results of Actionset, CDFL, TASL
and our US-FGW (i.e., deterministic autoencoders learned
by solving (10)) against the ground-truth of the video
“P14_stereo_P14_coffee” in the Breakfast dataset.

our US-FGW method is comparable to the ISBA methods [12] on
Mof-bg and IoU, and it even outperforms the ISBAED-TCN on IoD.
Similarly, for the CrossTask dataset, our method is comparable to
the NNV [49] on Mof-bg and outperforms it on IoD. Figure 3 fur-
ther qualitatively compares our proposed method’s output with the
ground truth and other referenced methods. Although our method
may fail to detect the background tag (i.e., SIL), it indeed detects
actions and localizes their changes with higher accuracy than both
transcript-supervised and set-supervised baselines.

5.3 Ablation study and robustness analysis
To demonstrate the usefulness of our US-FGW distance and the
corresponding contrastive learning framework, we compare our US-
FGW method with its variants on the Hollywood Extended dataset,
as shown in Table 2. In particular, when we learn our autoencoders
via solving (4), we just consider the unbalanced FGW distance
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Table 2: Ablation study of our US-FGWmethod on the Hol-
lywood Extended dataset.

Method Mof Mof-bg IoU IoD
Solving (4) 0.3422 0.3685 0.1957 0.3666
Solving (6) 0.3732 0.4067 0.2101 0.3780
Solving (10) (Proposed) 0.3840 0.4082 0.2307 0.4001

Figure 4: The influences of four key hyperparameters.

defined on the distance matrices and do not use the contrastive
learning framework. This variant simplifies our method but leads
to degraded performance at the same time because the distance
matrices are not so robust as the kernel matrices and the influence
of negative text sets is not considered. When solving (6), we use the
proposed US-FGW distance defined on the kernel matrices. It works
better than solving (4), which demonstrates the necessity of using
kernel matrices. The proposed method solves (10), which further
considers the contrastive learning framework based on the US-FGW
distance. As shown in Table 2, the proposed method outperforms
the above two variants consistently. The above analytic results
verify the rationality and the superiority of our method.

Besides the above ablation study, we further test the influence of
four key hyperparameters on our US-FGW method: 𝑖) the weight
𝜏 of the unbalanced regularizer, 𝑖𝑖) the weight 𝛾 of the contrastive
US-FGW term, 𝑖𝑖𝑖) the bandwidth 𝑏 of the RBF kernel, and 𝑖𝑣) the
hyperparameter 𝛽 controlling the trade-off between theWasserstein
term and the GW term in the US-FGW distance.

We visualize the Mof and IoU achieved by our method for the
Hollywood Extended dataset with respect to these four hyperpa-
rameters, as shown in Figure 4, and demonstrate the robustness of
our method to them. Firstly, the 𝜏 indicates the significance of the
unbalanced term in the US-FGW distance. Figure 4(a) shows that
our method achieves the best performance when 𝜏 = 0.01 and its
performance is relatively stable when 𝜏 ∈ [0.001, 1]. Secondly, the 𝛾
balances the reconstruction loss term and the US-FGW contrastive
term.Whenwe set𝛾 ∈ [0.5, 5], our method performs well, as shown
in Figure 4(b). When 𝛾 is too small, i.e., 𝛾 = 0.1, the contrastive term
will be too weak to regularize the learning of the autoencoders,
which leads to the over-fitting issue. Thirdly, for the bandwidth 𝑏 of

the RBF kernel, we find that when 𝑏 ∈ [0.1, 1], our method works
well in general, as shown in Figure 4(c). When the bandwidth is
too small, the similarity between arbitrary two latent codes will
tend to zero, which does harm to the discriminative power of the
corresponding kernel matrix. As a result, the optimal transport
(and accordingly, the matching result) learned by our method be-
comes unreliable. Finally, the 𝛽 ∈ [0, 1] controls the proportions
between Wasserstein term and GW term in the US-FGW distance.
Figure 4(d) shows that our method achieves the best performance
when 𝛽 = 0.1. Note that, when 𝛽 = 0 or 1, our US-FGW distance
degrades to the unbalanced spectral Wasserstein distance or the
unbalance spectral GW distance, which just considers either the
point-wise or the pair-wise similarity between the visual and the
textual latent codes. As shown in Figure 4, these two variants are
inferior to our US-FGW method.

6 CONCLUSION
In this work, we have proposed a new weakly-supervised temporal
action alignment method based on computational optimal trans-
port methods. The proposed method leverages a novel US-FGW
distance to capture the correspondence between frames and textual
descriptions in their latent space and formulates a new contrastive
learning paradigm based on this distance. Experimental results
show that our method achieves encouraging performance for set-
supervised temporal action alignment. In the aspect of computation,
the computational complexity of US-FGW distance is𝑂

(
𝐼2 𝐽 + 𝐽 2𝐼

)
,

and the learning process involves nested alternating optimization.
Therefore, when dealing with long videos with hundreds of actions,
we need to further improve the efficiency of our method. In the
aspect of modeling, the current framework treats the visual and
textual modalities evenly. However, for temporal action alignment,
the visual information of video frames is much more representative
than the textual tags, and the tags are very sparse. Taking such
imbalance into account may help us to train a better model. In
the future, we plan to explore the theoretical property of the new
contrastive learning paradigm and apply our method to other ap-
plications, e.g., large-scale multi-modal learning and other video
tagging tasks.
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Algorithm 1 US-FGW Temporal Action Alignment

Require: Data D = {(V𝑛,W𝑛)}𝑁𝑛=1, a vocabulary setWall, and
hyper-parameters 𝛽, 𝜏,𝛾 .

1: for𝑚 = 0, ..., 𝑀 − 1 (Outer Loop) do
2: Sample {V𝑛,W𝑛} randomly from D.
3: Construct a negative setW ′𝑛 randomly fromWall \W𝑛 .
4: Compute US-FGW distances (Inner Loop):
5: Obtain 𝑻+𝑛 ← 𝑑us-fgw (𝑓𝑣 (V𝑛), 𝑓𝑤 (W𝑛)) via (14)-(18).
6: Obtain 𝑻−𝑛 ← 𝑑us-fgw (𝑓𝑣 (V𝑛), 𝑓𝑤 (W ′𝑛)) via (14)-(18).
7: Update autoencoders:
8: Plug {𝑻+𝑛 , 𝑻−𝑛 } into (10) and update 𝑓𝑣, 𝑓𝑤 , 𝑔𝑣, 𝑔𝑤 via Adam.
9: end for

A BREGMAN ADMM ALGORITHM
In the beginning, the dual variables are initialized as a zero matrix
and two zero vectors, while 𝑻 = 𝑺 = 1

𝐼 𝐽
1𝐼×𝐽 , 𝒖 and 𝝁 are random

vectors on the Simplex. At the 𝑘-th iteration, we rewrite (13) in
the following the Bregman-augmented Lagrangian form for 𝑻 and
update 𝑻 in a closed form:

𝑻 (𝑘+1) = arg min𝑻 ∈Π (𝒖 (𝑘 ) ,·) (𝛽 − 1)⟨𝑲𝑣𝑤 , 𝑻 ⟩ − 𝛽 ⟨𝑲𝑣𝑺
(𝑘)𝑲𝑇𝑤 , 𝑻 ⟩

+ ⟨𝒁 (𝑘) , 𝑻 − 𝑺 (𝑘) ⟩ + 𝜌KL(𝑻 ∥𝑺 (𝑘) )

= diag(𝒖 (𝑘) )𝜎r

(
(1 − 𝛽)𝑲𝑣𝑤 + 𝛽𝑲𝑣𝑺 (𝑘)𝑲𝑇𝑤 − 𝒁 (𝑘)

𝜌
+ log 𝑺 (𝑘)

)
,

(14)

where Π(𝒖 (𝑘) , ·) represents a one-side marginal constraint, and 𝜎r
applies the softmax operation to each row of matrix.

Similarly, we can consider the Bregman-augmented Lagrangian
form for 𝑺 and update 𝑺 in a closed form:

𝑺 (𝑘+1) = arg min𝑺∈Π ( ·,𝝁 (𝑘 ) ) −𝛽 ⟨𝑲
𝑇
𝑣 𝑻
(𝑘+1)𝑲𝑤 , 𝑺⟩

+ ⟨𝒁 (𝑘) , 𝑻 (𝑘+1) − 𝑺⟩ + 𝜌KL(𝑺∥𝑻 (𝑘+1) )

= 𝜎c

(
𝛽𝑲𝑇𝑣 𝑻

(𝑘+1)𝑲𝑤 + 𝒁 (𝑘)
𝜌

+ log𝑻 (𝑘+1)
)
diag(𝝁 (𝑘) ),

(15)

where 𝜎c is the column-wise softmax operation.
Then, the auxiliary variables corresponding to the marginals of

𝑻 and 𝑺 are updated as follows:

min𝒖∈Δ𝐼−1 𝜏KL(𝒖∥
1
𝐼
1𝐼 ) + ⟨𝒛 (𝑘)1 , 𝒖⟩ + 𝜌KL(𝒖∥𝑻 (𝑘+1)1𝐽 )

⇒ 𝒖 (𝑘+1) = 𝜎

(
𝜌 log(𝑻 (𝑘+1)1𝐽 ) + 𝜏 log 1

𝐼
1𝐼 − 𝒛 (𝑘)1

𝜌 + 𝜏

)
,

(16)

min𝝁∈Δ𝐽 −1 𝜏KL(𝝁∥
1
𝐽
1𝐽 ) + ⟨𝒛 (𝑘)2 , 𝝁⟩ + 𝜌KL(𝝁∥(𝑺 (𝑘+1) )𝑇 1𝐼 )

⇒ 𝝁 (𝑘+1) = 𝜎
©«
𝜌 log((𝑺 (𝑘+1) )𝑇 1𝐼 ) + 𝜏 log 1

𝐽
1𝐽 − 𝒛 (𝑘)2

𝜌 + 𝜏
ª®¬ ,

(17)

where 𝜎 is the softmax operation of vectors.
Finally, we update the dual variables via the ADMM manner:

𝒁 (𝑘+1) = 𝒁 (𝑘) + 𝜌 (𝑻 (𝑘+1) − 𝑺 (𝑘+1) ),

𝒛 (𝑘+1)1 = 𝒛 (𝑘)1 + 𝜌 (𝒖 (𝑘+1) − 𝑻 (𝑘+1)1𝐽 ),

𝒛 (𝑘+1)2 = 𝒛 (𝑘)2 + 𝜌 (𝝁 (𝑘+1) − (𝑺 (𝑘+1) )𝑇 1𝐼 ) .

(18)

Repeating the above steps till 𝑻 (𝑘) converges, we obtain the
optimal transport matrix 𝑻 ∗ = 𝑻 (𝐾) . Plugging the optimal transport
matrices of all US-FGW distance terms into (10), we then update
the autoencoders via stochastic gradient descent (SGD) algorithm
like Adam [24]. As a result, our scheme of our learning algorithm is
shown in Algorithm 1, where 𝑻+ and 𝑻− are the optimal transport
matrices from the frame set to its positive text set and to its negative
text set, respectively.

B IMPLEMENTATION DETAILS
B.1 The architecture of autoencoders
For all three datasets, the architecture of the visual autoencoder is
Encoder:

𝑥 ∈ R64 → GRU64 → FC32 + ReLU→ FC16 → FC8 → 𝑧 ∈ R8

Decoder:

𝑧 ∈ R8 → FC16 + ReLU→ FC32 + ReLU→ FC64 → 𝑥 ∈ R64,
For Breakfast, the architecture of the textual autoencoder is
Encoder:

𝑥 ∈ R48 → FC32 + ReLU→ FC16 → FC8 → 𝑧 ∈ R8

Decoder:

𝑧 ∈ R8 → FC16 + ReLU→ FC32 + ReLU→ FC48 → 𝑥 ∈ R48,
For Hollywood Extended, the architecture of the textual autoen-
coder is

Encoder: 𝑥 ∈ R16 → FC10 + ReLU→ FC8 → 𝑧 ∈ R8

Decoder: 𝑧 ∈ R8 → FC10 + ReLU→ FC16 → 𝑥 ∈ R16,
For Crosstask, the architecture of the textual autoencoder is
Encoder:

𝑥 ∈ R80 → FC40 + ReLU→ FC16 → FC8 → 𝑧 ∈ R8

Decoder:

𝑧 ∈ R8 → FC16 + ReLU→ FC40 + ReLU→ FC80 → 𝑥 ∈ R80,
where GRU𝑘 stands for a one-layer gated recurrent unit (GRU)
whose hidden state dimension is𝑘 , FC𝑘 stands for the fully-connected
layer mapping to R𝑘 . When the autoencoders are probabilistic, for
each of their encoders, the last layer contains two FC layers, out-
putting the mean and the logarithmic variance accordingly. Note
that, for the dimension of the latent codes, we consider multiple
configurations, 𝑖 .𝑒 ., choosing it from {2, 3, 4, 6, 8, 10, 16, 32, 64}. Ex-
perimental results show that our US-FGW method achieves the
best performance when setting the latent dimension to be 8.

B.2 Length model
In (5), we set a uniform distribution ( 1

𝐽
1𝐽 ) to as the prior distribu-

tion of texts, which works to regularize the marginal distribution
of the optimal transport corresponding to texts. To describe the
distribution more accurately, we adopt a simple but effective ap-
proach to build a length model for the texts and update the texts’
distribution accordingly. In particular, during the training process,
we maintain a buffer for each video, whose length is same as the
size of the corresponding action set. We initialize the buffer via
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Figure 5: Visualization on distance matrix 𝑲𝑣 , 𝑲𝑤 , optimal
transport matrix 𝑻 and ground truth matrix of the video
“P14_cam01_P14_coffee” in the Breakfast dataset.

1
𝐽
1𝐽 . In each epoch, we tag each frame in the video according to

current model, and then, obtain the number of frames belonging
to each action (a.k.a., the length of the clip of each action). As a
result, these numbers provide us with a histogram estimation of the
texts’ distribution, and thus, we store the normalized numbers in
the buffer and use them as the texts’ distribution in the next epoch.
Since one action usually lasts a similar time, thus with the update
of the length model, the prior length distribution can get closer and
closer to the real distribution.

B.3 The specific testing methods
In the training process, we reduce the distance between the cor-
responding frames and words by learning the visual and textual
autoencoders. In the testing phase, after mapping the frames and
words to the latent space, we derive the matching results by com-
puting an optimal transport matrix between two latent codes. Based

on the optimal transport matrix, we align the frames to their corre-
sponding words. It should be noted that besides this testing strategy,
the following two testing strategies can be applied to our method
as well.
• Taking advantage of the two well-learning autoencoders, we
can derive the matching results by the distance matrix 𝑲𝑣𝑤
directly, whose element 𝑑 (𝒗𝑖 ,𝒘 𝑗 ) represents the distance
between the latent code of the 𝑖-th frame and that of the 𝑗-th
word.
• Additionally, we can feed the visual latent codes into the
textual decoder part to get a classification probability for
each frame, and then assigning the maximum one as the
predicted label to the frame.

Experimental results show that using the OT matrix to infer the
actions helps to achieve the best results.

B.4 Inference method
In the testing phase, we sample one frame every 10 frames of the
video and compute the OT matrix accordingly. Then, we expand the
tags inferred from the OT matrix by a factor of 10. Additionally, to
improve the continuity of the predicted actions, we set a threshold
value in the inference process. For each predicted clips (a sequence
of frames tagged with the same textual description/action), if the
number of predicted actions is less than the threshold value, we
replace it with the one with more predicted frames among the
preceding and following actions.

C VISUALIZATION
Figure 5 displays distance matrix 𝑲𝑣 , 𝑲𝑤 , optimal transport matrix
𝑻 and ground truth matrix of the video “P14_cam01_P14_coffee”
in the Breakfast dataset. For distance matrix 𝑲𝑣 , we can find that
it not only reflects the similarity of frames’ content but shows the
order information between frames. As to distance matrix 𝑲𝑤 , it
only reflects the difference in the symbolical meanings. From the
second row of Figure 5, we can compare the optimal transport
matrix with the ground truth matrix intuitively. For all three action
labels appearing in the video, we can recognize them well and
finally achieve the alignment task between frames and words.
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