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ABSTRACT
Video summarization is a critical task in video analysis that aims
to create a brief yet informative summary of the original video (i.e.,
a set of keyframes) while retaining its primary content. Supervised
summarization methods rely on time-consuming keyframe label-
ing and thus often suffer from the insufficiency issue of training
data. In contrast, the performance of unsupervised summarization
methods is often unsatisfactory due to the lack of semantically-
meaningful guidance on the keyframe selection. In this study, we
propose a novel self-supervised video summarization framework
with the help of computational optimal transport techniques. Specif-
ically, we generate textual descriptions from video shots and learn
the projection from the textual embeddings to the visual ones to-
gether with an optimal transport plan between them via solving
an inverse optimal transport problem. We propose an alternat-
ing optimization algorithm to solve this problem efficiently and
design an effective mechanism in the algorithm to avoid trivial
solutions. Given the optimal transport plan and the underlying
distance between the projected textual embeddings and the visual
ones, we synthesize pseudo-significance scores for video frames
and leverage the scores as offline supervision to train a keyframe
selector. Without subjective and error-prone manual annotations,
the proposed framework surpasses previous unsupervised meth-
ods in producing high-quality results for generic and instructional
video summarization tasks, whose performance even is compa-
rable to those supervised competitors. The code is available at
https://github.com/Dixin-s-Lab/Video-Summary-IOT.
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1 INTRODUCTION
The advancement of multimedia technology leads to an enormous
growth of video data. At the same time, retrieving and recommend-
ing videos effectively and efficiently becomes challenging, given
the massive amount of videos. Video summarization provides a
competitive solution to this challenge, representing a long video
with informative keyframes. The keyframes compress the video size
significantly while retaining its primary content. This technique
not only provides significant evidence for video retrieval and rec-
ommendation [22, 55] but also helps individuals to preview videos
quickly through their keyframes, which has been widely used in
many application scenarios, e.g., video editing [15, 31], content
filtering [71], and semantic analysis [14, 28].

Many video summarization methods have been proposed in the
past few decades, which can be coarsely categorized based on the
degree of supervision. Supervised summarization methods train
keyframe selectors based on the videos with manually-annotated
keyframes [13, 36, 39, 74]. These methods often suffer from insuf-
ficient training data because video annotation is time-consuming.
Instead of leveraging frame-level annotations, weakly-supervised
methods [35, 55] use auxiliary information such as video-level
tags [6, 38] and user comments [8, 64] to supervise training pro-
cesses. While collecting such auxiliary information is much eas-
ier than labeling frames, it may not be aligned semantically with
the keyframes of videos. As a result, the corresponding weakly-
supervised summarization methods are only available in some spe-
cific scenarios. Recently, some attempts have been made to achieve
unsupervised video summarization [2, 34, 46, 56, 69] without any
annotations. Still, the performance of the methods is often inferior
to the supervised and weakly-supervised ones due to the lack of
semantically-meaningful guidance on the keyframe selection.

In this study, we propose a novel self-supervised framework
for video summarization with the help of computational optimal
transport (OT) techniques [40]. As depicted in Figure 1, we first
leverage a pre-trained caption generator [21] to generate textual
descriptions for video shots. The textual descriptions provide ini-
tial and coarse semantic guidance for video summarization at the
shot level. Then, we map the shots’ textual descriptions and the
video frames into the same semantic space and align their embed-
dings. In particular, we optimize a multi-layer perceptron (MLP) to
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Figure 1: An illustration of our self-supervised video summarization framework. The grey modules are pre-trained models,
while the red modules (i.e., the projector and the keyframe selector) are learnable. The red and blue arrows correspond to the
steps only used for training, while the black bold arrows are the steps used for both training and testing.

project shot-level textual embeddings to shot-level visual embed-
dings. At the same time, we compute the unbalanced Wasserstein
(UW) distance [42] between the projected textual embeddings and
frame-level visual embeddings, in which the MLP determines the
underlying distance. Solving these two problems jointly in a bi-level
optimization framework leads to an inverse optimal transport (IOT)
problem [68]. We solve this problem efficiently by an alternating
optimization algorithm, in which a boundary regularizer is applied
to avoid trivial solutions. The learned transport plan and under-
lying distance help to construct frame-level pseudo-significance
scores. We train a keyframe selector by taking the scores as the
visual embeddings’ labels. In the inference phase, we leverage the
keyframe selector to predict the scores of video frames and select
keyframes by the 0/1 Knapsack algorithm [47].

The proposed self-supervised video summarization framework
generates semantic guidance from the videos themselves rather
than external or predefined annotations, leading to a novel and
promising optimal transport-based solution to unsupervised video
summarization. To our knowledge, this framework makes the first
attempt to achieve cross-modal semantic alignment based on the
inverse optimal transport strategy. The MLP-based projector and
the transport plan benefit each other, resulting in more precise
alignment results and, thus, more reliable pseudo scores (for offline
supervision). We conduct comprehensive experiments on various
video summarization tasks, including the generic video summariza-
tion task commonly considered by existing methods [34, 36, 39]
and the instructional video summarization task proposed in [35].
Experiments show that our approach outperforms existing unsu-
pervised methods in generating high-quality video summaries and
can even be comparable to the supervised competitors.

2 RELATEDWORK
2.1 Video Summarization
Most existing video summarization methods employ supervised
learning strategies [13, 18, 36, 39, 73]. Given frame-level annota-
tions, these methods typically treat the summarization task as a la-
bel prediction problem and train various models, e.g., determinantal
point process [27], LSTM [30, 73, 74], attention model [3, 13, 18, 66],
knowledge-based models [57] and graph-based models [39], to pre-
dict keyframes. However, acquiring frame-level annotations from

a large number of videos is always challenging because manually
labeling frames is with low efficiency and unsatisfactory reliability
— such subjective annotations may inherit the bias of annotators. As
a result, the supervised video summarization methods often suffer
from the data insufficiency issue and poor generalization power.

To reduce the dependency on manual frame-level annotations,
weakly-supervised summarization methods are proposed [6, 35,
38, 55] based on the video-level or shot-level labels generated by
video platforms or associated with the video themselves, e.g., video-
level tags [6, 38], metadata like titles [47] and descriptions [55],
and external texts like subtitles and user comments [8]. Based on
such labels, many methods apply weakly-supervised algorithms to
train their models [35, 55]. Recently, several attempts have been
made to accomplish video summarization through unsupervised
methods [34, 43, 46, 69]. Typically, the unsupervised summarization
methods leverage various adversarial learning frameworks [46, 69],
training sequential models to predict keyframes together with dis-
criminators to challenge the quality of the keyframes [34]. However,
without fine-grained semantic alignment, these coarse labels in-
troduce significant uncertainty to the selection of keyframes and,
thus, harm the performance of the weakly-supervised summariza-
tion methods. This problem becomes even worse for unsupervised
methods — without any semantically-meaningful guidance, the un-
supervised methods have a risk of ignoring important video content
and thus fail to produce high-quality video summaries.

2.2 Optimal Transport for Semantic Alignment
Optimal transport (OT) theory [40, 53] provides a series of power-
ful computational methods for comparing probability distributions,
which has been used in domain adaptation [65], image genera-
tion [4, 12, 50], word embedding [1, 26, 63], and document com-
parison [20, 68, 70]. In particular, these OT-based methods pro-
vide theoretically-guaranteed solutions to various matching prob-
lems, e.g., cross-modal alignment [7, 9, 33], graph matching [62],
point cloud registration [5, 41], and densely-packed semantic cor-
respondence issues [32]. For instance, the Vision-Language Pre-
trained (VLP) model, Uniter [9], applies optimal transport to pro-
mote fine-grained alignment between words and image regions,
resulting in better joint embeddings for downstream tasks. The
high-performance detector YOLOX [17] utilizes the Optimal Trans-
port Assignment (OTA) [16] as a candidate label-assigning strategy,
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given its outstanding matching performance. These applications
demonstrate the remarkable versatility of optimal transport in cross-
modal alignment and inspire us to develop an OT-based framework
for video summarization.

Most existing methods solve optimal transport problems in the
Kantorovich form (i.e., Wasserstein distance) [23]. Some efficient ap-
proximate algorithms have been proposed, such as Sinkhorn scaling
algorithm [10], proximal point method [60], and Bregman alternat-
ing direction method of multipliers (B-ADMM) [54, 61]. Recently,
inverse optimal transport (IOT) has been proposed to optimize the
underlying distance given a noisy or partially observed transport
plan [29, 48]. This problem can be solved by the hypergradient
method proposed in [59]. The work in [68] applies an IOT-based
framework to achieve textual data alignment, which obtains en-
couraging performance in legal document analysis. In this study,
we propose a new IOT-based alignment method for self-supervised
video summarization.

3 PROPOSED FRAMEWORK
3.1 Self-supervised Principle
Given an arbitrary video with 𝐼 frames, denoted as V = {𝑣𝑖 }𝐼𝑖=1,
where 𝑣𝑖 represents the 𝑖-th frame, video summarization aims to
select a set of keyframes, i.e., {𝑣𝑖 }𝑖∈S and S ⊂ {1, ..., 𝐼 }, to capture
the primary content, especially, the highlights of the video. To
achieve this aim, wewould like to learn a keyframe selector, denoted
as 𝑔 : V ↦→ {0, 1}𝐼 , in a self-supervised learning framework based
on a set of unlabeled training videos.

Neither using manually-labeled video frames nor purely relying
on visual information of the frames, the proposed self-supervised
learning framework leverages a pre-trained multi-modal model as
a caption generator, generating textual descriptions from video
shots. Then, it extracts useful frame-level information from the
generated texts to supervise the training of the keyframe selector.
On the one hand, this framework can be more efficient than exist-
ing supervised learning methods because the texts are generated
automatically rather than manually. On the other hand, compared
to weakly-supervised and unsupervised methods, the texts describe
the videos themselves and are highly correlated with the visual con-
tents, which can provide semantically-meaningful guidance when
training the keyframe selector.

Denote the training videos asV = {(V𝑛}𝑁𝑛=1. In this study, we
first divide each video into several shots with a fixed duration. Ap-
plying a pre-trained video caption model [21] as the caption genera-
tor, we generate a textual description for each video shot. As a result,
we obtain a set of video-text pairs, i.e., D = {(V𝑛,W𝑛)}𝑁𝑛=1. Here,
V𝑛 = {𝑣𝑖,𝑛}𝐼𝑛𝑖=1 represents the 𝑛-th training video with 𝐼𝑛 frames,
andW𝑛 = {𝑤 𝑗,𝑛}𝐽𝑛𝑗=1 represents 𝐽𝑛 sentences corresponding to the
𝐽𝑛 shots of the videoV𝑛 . Note that, we apply the shot-level textual
descriptions because generating texts in the frame level is time-
consuming and contain many redundant and repeated sentences,
which is unnecessary for our task.

In our self-supervised learning framework, the main challenge
is extracting visual and textual features from the above dataset
and establishing their semantic correspondence to guide the selec-
tion of keyframes. In the following content, we will show that this

challenge can be resolved with the help of computational optimal
transport techniques. In particular, we apply an inverse optimal
transport method to learn an explicit projection from textual em-
beddings to visual ones and compute the unbalanced Wasserstein
between the two domains jointly, leading to informative guidance
for training the keyframe selector.

3.2 Semantic Inverse Optimal Transport
For each video-text pair in the dataset, we can extract their fea-
tures based on the pre-trained multi-modal model. Specifically,
given a video with 𝐼 frame and 𝐽 shot-level textual descriptions,
i.e., (V = {𝑣𝑖 }𝐼𝑖=1,W = {𝑤 𝑗 }𝐽𝑗=1), we apply the pre-trained CLIP
model [45] to obtain 𝐷-dimensional visual and textual embeddings,
i.e., 𝑽 = 𝑓𝑣 (V) = [𝒗𝑖 ] ∈ R𝐼×𝐷 and𝑾 = 𝑓𝑤 (W) = [𝒘 𝑗 ] ∈ R𝐽 ×𝐷 ,
respectively. To build the semantic correspondence between the
visual and textual embeddings at the frame level, we need to align
them in the latent space. A straightforward way to achieve this
alignment task is computing the Wasserstein distance [9, 16] (or its
variants [33]) between the visual and textual embeddings, which
leads to the optimal transport problem in the Kantorovich form:

𝑑w (𝑽 ,𝑾 ) = min
𝑻 ∈Π (𝒖,𝝁 )

E(𝒗,𝒘 )∼𝑻 [𝑑 (𝒗,𝒘)] = min
𝑻 ∈Π (𝒖,𝝁 )

⟨𝑫𝑣𝑤 , 𝑻 ⟩ (1)

Here, 𝑫𝑣𝑤 = [𝑑 (𝒗𝑖 ,𝒘 𝑗 )] ∈ R𝐼× 𝐽 represents the distance matrix,
where 𝑑 (𝒗𝑖 ,𝒘 𝑗 ) indicates the Euclidean distance between 𝒗𝑖 and
𝒘 𝑗 . 𝒖 ∈ Δ𝐼−1 and 𝝁 ∈ Δ𝐽 −1 represent the empirical distributions
of visual and textual embeddings, respectively. Without any prior
knowledge, we often assume they are uniform, i.e., 𝒖 = 1

𝐼
1𝐼 and

𝝁 = 1
𝐽
1𝐽 . 𝑻 ∈ Π(𝒖, 𝝁) = {𝑻 ≥ 0|𝑻1𝐽 = 𝒖, 𝑻𝑇 1𝐼 = 𝝁} is the joint

distribution of the visual and textual embeddings, which is also
called transport plan. As shown in (1), the Wasserstein distance
aims to find the optimal transport plan, denoted as 𝑻 ∗, such that
the expectation of the distance is minimized. The element of 𝑻 ∗,
i.e., 𝒕∗

𝑖 𝑗
, represents the coherency probability of 𝒗𝑖 and 𝒘 𝑗 , which

may indicate the semantic correspondence between the 𝑖-th video
frame and the 𝑗-th textual description.

Applying the above method directly often results in unsatisfac-
tory semantic alignment because of the following two reasons.

(1) Firstly, the rationality of the learned semantic correspon-
dence depends on the quality of the visual and textual embed-
dings (and accordingly, the underlying distancematrix) [9, 16,
33]. When using the pre-trained CLIP [45], however, we find
that the distribution of the visual embeddings is significantly
different from that of the textual embeddings. As shown in
Figure 2(a), the textual embeddings aggregate together, while
the visual embeddings have clustering structures associated
with different video shots. These results suggest that the pre-
trained CLIP model has poor semantic consistency under
the present data distribution.

(2) Secondly, given shot-level textual embeddings and frame-
level visual embeddings, we need to achieve a partial align-
ment, i.e., matching some informative frames with meaning-
ful texts, because many frames, even shots, are redundant or
meaningless. In this case, the distributions of the frames and
texts are sparse but unknown. In other words, the uniform
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(a) Before text projection. (b) After text projection.

Figure 2: For the “video_13” in SumMe [19], we visualize the
t-SNE [51] of the semantic gap between frames and textual
descriptions before and after the text projection module. The
numbers indicate the order in which the textual description
(video shot) appears in the video. The data are from .

marginal distributions and the strict constraints used in (1)
are unsuitable for our problem.

We apply a novel inverse optimal transport (IOT) method to
solve the above challenges. Given 𝑁 video-text pairs and the cor-
responding embeddings {(𝑽𝑛,𝑾𝑛)}𝑁𝑛=1, we can learn a projector 𝑓
from the textual domain to the visual domain and a set of optimal
transport plans {𝑻𝑛}𝑁𝑛=1 by solving a regularized IOT problem:

min{𝑻𝑛 }𝑁𝑛=1,𝑓

∑︁𝑁

𝑛=1
⟨𝑫𝑛 (𝑓 ), 𝑻𝑛⟩ + 𝜏𝑅𝑇 (𝑻𝑛)︸                                                     ︷︷                                                     ︸∑𝐷

𝑛=1 𝑑uw (𝑽𝑛,𝑓 (𝑾𝑛 ) )

𝑠 .𝑡 . 𝑓 ∈ arg min
𝑓

∑︁𝑁

𝑛=1

∑︁𝐽𝑛

𝑗=1
𝑑 (𝒗𝑛,𝑗 , 𝑓 (𝒘𝑛,𝑗 )) + 𝑅𝑓 (𝑓 (𝑾𝑛))︸                                                      ︷︷                                                      ︸

L𝑓

.

(2)

As shown in (2), the regularized IOT problem corresponds to a bi-
level optimization problem. The upper-level problem corresponds to
the summation of the unbalanced Wasserstein (UW) distances [42]
defined for the 𝑁 video-text pairs. For each pair, compared to the
Wasserstein distance in (1), the main differences in each unbalanced
Wasserstein distance include two points and help to overcome the
above two challenges. Firstly, we apply the projector 𝑓 to the tex-
tual embeddings before computing the underlying distance matrix,
i.e., 𝑫𝑛 (𝑓 ) = [𝑑 (𝒗𝑛,𝑖 , 𝑓 (𝒘𝑛,𝑗 ))] ∈ R𝐼𝑛× 𝐽𝑛 . The projector aims to en-
hance the consistency between the textual domain and the visual do-
main, such that the underlying distance is more reliable, and accord-
ingly, the transport plan becomes more semantically-meaningful. In
this study, we learn the projector and the 𝑁 transport plans jointly.
Secondly, we introduce the regularizer on the marginals of each
transport plan, i.e., 𝑅(𝑻𝑛) = KL(𝑻𝑛1𝐽𝑛 ∥ 1

𝐼𝑛
1𝐼𝑛 ) + KL(𝑻⊤𝑛 1𝐼𝑛 ∥ 1

𝐽𝑛
1𝐽𝑛 ),

and use a hyperparameter 𝜏 > 0 to control its significance. This
regularizer penalizes the KL-divergence between the marginals of
the transport matrix and the corresponding uniform distributions.
The unbalanced Wasserstein distance relaxes the strict marginal
constraints of the transport plan to the regularizer. It thus allows
us to perform partial alignment — only a part of the frames are
aligned to the texts, which helps to select the informative frames
and filter out the redundant ones.

Because learning the projector and the transport plans jointly
may lead to trivial solutions, we introduce a lower-level optimiza-
tion problem to regularize the learning of the projector. Specifically,
the correspondence between each video’s textual descriptions and
shots is known because we generate one textual description per
shot. Therefore, in the lower-level optimization problem, we con-
sider learning the projector to minimize the distance from each
projected textual embedding to the visual embedding of its corre-
sponding video shot. Here, we take the average of the frames’ visual
embeddings within a shot as the shot’s visual embedding, denoted
as �̂� = [𝒗 𝑗 ] ∈ R𝐽 ×𝐷 . Additionally, when dividing continuous video
content into fixed-length video shots, we may introduce some unde-
sired semantic ambiguity at the boundaries of those adjacent shots,
i.e., the text embeddings corresponding to adjacent shots appear
close to each other in the latent space. To avoid a projector mapping
different textual embeddings to the same point), for each video, we
consider a boundary regularizer based on the KL-divergence:

R𝑓 (𝑓 (𝑾𝑛)) := KL(𝑫𝑤 (𝑓 (𝑾𝑛))∥𝑩𝑛) . (3)

Here, 𝑫𝑤 (𝑓 (𝑾 )) = [𝑑 (𝑓 (𝒘𝑛,𝑗 ), 𝑓 (𝒘𝑛,𝑗 ′ ))] ∈ R𝐽𝑛× 𝐽𝑛 is the Eu-
clidean distance matrix for the projected textual embeddings. 𝑩𝑛 =

1𝐽𝑛× 𝐽𝑛 − 𝑰 𝐽𝑛 is a boundary constraint matrix of size 𝐽 × 𝐽 , whose di-
agonal elements are zeros and the remaining elements are ones. The
KL divergence penalizes the difference between 𝑫𝑤 (𝑓 (𝑾 )) and
𝑩𝑛 , encouraging the diversity of the projected textual embeddings.

We apply an alternating optimization strategy to solve the IOT
problem. Specifically, given the current projector, we solve 𝑁 un-
balanced Wasserstein distance problems based on the Bregman
ADMM algorithm in [33, 61] and obtain 𝑁 optimal transport plans
accordingly. Then, we update the projector by Adam [25], in which
the objective function considers both the lower-level and the upper-
level problems, and the gradients of 𝑓 with respect to the optimal
transport plans are computed based on the hypergradient method
in [59]. In this study, the architecture of the projector 𝑓 is a Multi-
Layer Perceptron (MLP) that contains two fully-connected (FC)
layers with a ReLU layer between them. As shown in Figure 2(b),
applying the learned 𝑓 , the projected textual embeddings aligned
well with the shots’ visual embeddings. Based on the well-aligned
projected textual embeddings and the frame-level visual embed-
dings, we can obtain reliable transport plans to guide the learning
of the keyframe selector.

3.3 Pseudo Scores for Keyframe Selection
For each video, we construct the frame-level pseudo-significance
score to supervise the training of the keyframe selector. In particular,
the proposed pseudo-significance score consists of the following
two parts: the alignment score and the representation score.

Alignment score. The alignment score is based on the fact
that one textual description can capture the key information of a
given video shot. Thus, the alignment between the text and the
frames within the shot can reveal the significance of each frame
relative to the shot. After solving the IOT problem, the optimal
transport plan we learned has achieved semantic alignment. Given
a video with 𝐼 frames and 𝐽 textual descriptions, we denote the
corresponding optimal transport plan as 𝑻 ∗ = [𝑡∗

𝑖 𝑗
] ∈ R𝐼× 𝐽 . For the

frame 𝑣𝑖 , we can select the top 𝐾 texts that match the frame best
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Algorithm 1 Training steps of our method

Require: V = {V𝑛}𝑁𝑛=1; learning rates 𝜂1, 𝜂2; trade-off weight 𝛾 .
1: Generate textsW = {W𝑛}𝑁𝑛=1 based onV = {V𝑛}𝑁𝑛=1.
2: Extract embeddings D = {(𝑽𝑛,𝑾𝑛)}𝑁𝑛=1 via a pre-trained rep-

resentation model.
3: ⊲ Solving the IOT problem
4: repeat
5: Sample (𝑽𝑛,𝑾𝑛) from D. Calculate shot embeddings �̂�𝑛 .
6: Calculate the lower-level objective L𝑓 .
7: Calculate the UW distance 𝑑uw (𝑽𝑛, 𝑓 (𝑾𝑛)).
8: Calculate L = L𝑓 + 𝛾𝑑uw, then 𝜃 𝑓 ← 𝜃 𝑓 − 𝜂1∇𝜃 𝑓 L.
9: until convergence
10: ⊲ Pseudo score generation
11: for 𝑛 = 1, ..., 𝑁 do
12: Compute alignment score 𝒔𝑛,𝑎 via 𝑻 ∗ of 𝑑uw (𝑽𝑛, 𝑓 (𝑾𝑛)).
13: Compute representation score 𝒔𝑛,𝑟 via (4).
14: Compute pseudo score 𝑠𝑛 via (5).
15: end for
16: ⊲ Training keyframe selector
17: repeat
18: Sample {𝑽𝑛,𝑾𝑛, 𝑠𝑛} randomly from D ∪ {𝑠𝑛}𝑁𝑛=1.
19: Calculate importance scores 𝒚𝑛 by 𝑔(𝑽𝑛).
20: Calculate L𝑔 via (6), then 𝜃𝑔 ← 𝜃𝑔 − 𝜂2∇𝜃𝑔L𝑔 .
21: until convergence
22: Select keyframes by 0/1 Knapsack algorithm based on {𝒚𝑛}𝑁𝑛=1.

by J𝑖 = arg sort-𝐾 𝑗∈{1,...,𝐽 }𝑡𝑖 𝑗 . Similarly, for the text 𝑤 𝑗 , we can
select the top 𝐾 frames by I𝑗 = arg sort-𝐾𝑖∈{1,...,𝐼 }𝑡𝑖 𝑗 . Accordingly,
denote the alignment score as 𝒔𝑎 = [𝑠𝑎,𝑖 ] ∈ R𝐼 . We consider the
following two implementations in this study:

(1) Frame-oriented score: Given the text set J𝑖 , we define the
𝑖-th frame’s alignment score as 𝑠𝑎,𝑖 =

∑
𝑗∈J𝑖 −𝑑 (𝒗𝑖 , 𝑓 (𝒘 𝑗 )).

(2) Text-oriented score: Given the set of the top 𝐾 frames I𝑗 ,
for the 𝑗-th text, we define the relative significance of the

𝑖-th frame as 𝑠𝑖 𝑗 =
∑

𝑘∈I𝑗 𝑑 (𝒗𝑘 ,𝑓 (𝒘𝑗 ) )
𝑑 (𝒗𝑖 ,𝑓 (𝒘𝑗 ) ) . Finally, the alignment

score of the 𝑖-th frame is set as 𝑠𝑎,𝑖 = max𝑗∈{1,...,𝐽 } 𝑠𝑖 𝑗 .
Both implementations ensure that the frames matching the textual
descriptions have high alignment scores.

Representation score. Besides the alignment score, we fur-
ther propose a representation score for video frames, denoted as
𝒔𝑟 = [𝑠𝑟,𝑖 ] ∈ R𝐼 , which measures the frames’ representativeness.
This score is motivated by the requirement of video summarization
on the completeness of the original video’s storyline — the selected
keyframes should be able to reconstruct the frames in their neigh-
borhoods with tolerable errors. We define the representation score
based on the reconstruction error defined in the latent space. For
the 𝑖-th frame, we consider its 𝐾 ′ neighbor frames, denoted as a set
I𝑖 . The 𝑖-th representation score is defined as

𝑠𝑟,𝑖 =
1
|I𝑖 |

∑︁
𝑘∈I𝑖
∥𝒗𝑖 − 𝒗𝑘 ∥2, (4)

which calculates the average of the Euclidean distances between
the frame’s embedding and its neighbors’ embeddings. The lower
the representation score is, the more representative the frame is.

Considering the above two kinds of scores, we obtain the pro-
posed frame-level pseudo-significant score as follows.

𝒔 = 0.5(𝒔𝑎 − 𝒔𝑟 + 1), (5)

where 𝒔𝑎 and 𝒔𝑟 are normalized alignment and representation
scores.1 The pseudo-significance score provides us with “labels”
to the proposed keyframe selector 𝑔, which comprises an encoder-
only transformerwith positional embeddings [52]. Given𝑁 training
videos, whose frame-level visual embeddings are {𝑽𝑛 ∈ R𝐼𝑛×𝐷 }𝑁𝑛=1
and pseudo-significant score vectors are {𝒔𝑛}𝑁𝑛=1, we learn the
keyframe selector as follows:

min𝑔
∑︁𝑁

𝑛=1

∑︁𝐼𝑛

𝑖=1
loss(𝑔(𝑽𝑛), 𝒔𝑛), (6)

where the loss function can be the mean-square-error (MSE) or
the binary cross-entropy loss. The training scheme of our self-
supervised video summarization method is shown in Algorithm 1.

3.4 Keyframe Inference
Following prior methods [13, 36, 46, 73], we achieve keyframe se-
lection in the inference phase based on the 0/1 Knapsack algo-
rithm [47]. In particular, given a video with 𝐼 frames , we first
extract 𝐼 visual embeddings based on the pre-trained model and
compute their significance scores based on the learned keyframe
selector, i.e., 𝒚 = 𝑔kfs (𝑓𝑣 (V)). Then we select at most 𝐿 keyframes
by solving the following binary optimization problem:

𝒖∗ = arg max𝒖∈{0,1}𝐼 ⟨𝒖,𝒚⟩ s.t. ∥𝒖∥1 ≤ 𝐿. (7)

The objective function in (7) corresponds to maximizing the scores
of the selected frames, and the constraint ensures that the maximum
number of the selected frames is 𝐿. This is a typical Knapsack
problem and can be solved by the 0/1 Knapsack algorithm [47]. As
a result, we take the selected keyframes as the video summary.

4 EXPERIMENTS
4.1 Implementation Details
To demonstrate the effectiveness of our video summarization ap-
proach, we test it on both generic and instructional video summa-
rization tasks and compare it with state-of-the-art methods.

4.1.1 Tasks and Datasets. The video summarization task generally
refers to the generic video summarization [44, 46, 69, 72], which
aims to provide a comprehensive summary of the original video by
selecting important shots/frames that cover the main content. Re-
cently, a new type of video summarization task called instructional
video summarization [35] has been proposed, which aims to sum-
marize an instructional video by the shots/frames corresponding to
the steps of a specific task shown in the video. In the generic video
summarization task, we consider SumMe [19] and TVSum [47]
datasets. SumMe comprises 25 user videos ranging from 1.5 to
6.5 minutes, annotated by mostly 15 users. TVSum consists of 50
videos ranging from 1 to 11 minutes, annotated by 20 users. For
each dataset, we follow the data splits in [13], using 80% data for
training and 20% data for testing. Besides the above standard data
setting, we augment the training data by two more external video
1In this study, for each score vector, we minimize its minimum and divide its dynamic
range, such that the range of the normalized score is [0, 1]. Accordingly, the range of
the final pseudo score is [0, 1] as well.
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Category Method SumMe TVSum WikiHow

Standard Augment Transfer Standard Augment Transfer F1-Score Precision Recall

Supervised

SUM-GAN [34] 38.3 43.1 41.4 55.9 58.3 56.6 42.3 48.5 46.2
*RSGN [75] 45.0 45.7 44.0 60.1 61.1 60.0 - - -
DSNet [77] 48.6 49.1 46.3 61.9 63.3 59.4 49.4 54.5 59.5
VASNet [13] 50.0 51.4 44.2 61.4 62.3 57.2 49.6 56.0 55.9
*SumGraph [39] 51.4 52.9 48.7 63.9 65.8 60.5 - - -

Unsupervised or

SUM-GAN [34] 36.7 39.3 41.8 54.5 57.6 56.6 46.3 52.3 52.1

Self-supervised

DR-DSN [76] 37.3 42.5 41.6 55.8 58.4 57.4 48.0 53.0 53.2
*RSGN [75] 42.3 43.6 41.2 58.0 59.1 59.7 - - -
IV-Sum [35] - - - - - - 43.6 50.8 50.6
CLIP-It [36] 50.8 48.3 43.8 57.9 60.5 58.9 49.6 56.9 53.1
Ours 50.2 48.8 44.9 59.4 60.3 59.2 55.2 53.4 70.8

Table 1: Comparisons for various video summarization methods. For SumMe and TVSum, we only list the F1-Scores achieved
under the “Standard”, “Augment”, and “Transfer” settings. For WikiHow, we list the F1-Score, Precision, and Recall achieved
under the Standard data setting. The methods with "*" do not release source codes, so we quote their results from the references.
For the unsupervised and self-supervised methods, we bold the best results and underline the second best ones.

datasets, i.e., Open Video Project (OVP) and Youtube [11],2 leading
to an augmented data setting. Furthermore, we consider a trans-
fer learning setting, using TVSum (SumMe), OVP, and Youtube for
training and SumMe (TVSum) for testing. In the instructional video
summarization task, we apply theWikiHow dataset [35], which
contains 2,105 videos of 20 various tasks. We partition WikiHow
into 1,684 training videos and 421 testing videos.

4.1.2 Baselines. In both generic and instructional video summa-
rization tasks, we compare our approach with state-of-the-art meth-
ods. Our comparison primarily focuses on existing unsupervised or
self-supervised methods, including SUM-GAN [34], DR-DSN [76],
RSGN [75], SumGraph [39], CLIP-It [36], and IV-Sum [35].3 Addi-
tionally, we conduct comparative experiments with some super-
vised methods such as DSNet [77], VASNet [13], and the supervised
version of SUM-GAN [34], and RSGN [75].

4.1.3 Evaluation Metrics. Following the work in [35–37], we use
F1-Score (and associated Precision and Recall) to evaluate each
method. Given a generated summary and the corresponding ground
truth summary, each represented as a list of keyframes’ indices,
we locate the keyframes of each summary in the original video
and represent them as two binary sequences with the same length,
denoted as 𝐴 and 𝐵, respectively. We compute the precision and
recall as 𝑃 = |𝐴 ∩ 𝐵 | /|𝐴| and 𝑅 = |𝐴 ∩ 𝐵 | /|𝐵 |, respectively. The
F1-Score is 𝐹1 = 2𝑃𝑅

𝑃+𝑅 . Given the frame-level scores associated with
𝐴 and 𝐵, we further apply the correlation coefficients (i.e., Kendall’s
𝜏 [24] and Spearman’s 𝜌 [78]) to evaluate each method. Following
the strategy in [35–37], for each video with𝑀 manual annotations,
we compute each evaluation metrics𝑀 times independently based
on the annotations and take the average value as the final result
for TVSum while the maximum one for SumMe.

4.1.4 Model Configuration. Text generation.Given an input video,
we divide the video into multiple shots (e.g., 10s per shot) and take

2The OVP contains 50 videos with varying lengths between 1 to 4 minutes, and the
Youtube dataset contains 39 videos ranging from 1 to 10 minutes.
3IV-Sum [35] is a method specialized for instructional video summarization.

each shot as the input of a captioningmodel. For our framework and
IV-Sum, we apply the Hierarchical Temporal-Aware (HiTeA) Video-
Language Pre-trainingmodel [67] to generate one sentence per shot.
For CLIP-It, we follow its default setting, applying the Bi-Modal
Transformer (BMT) model [21] to generate textual descriptions.
The BMT model inputs a shot and outputs multiple sentences cor-
responding different durations. We choose the sentence with the
longest duration as the textual description.

Image and text encoding. Following [44, 46, 69, 72], we down-
sample the video frames uniformly at two frames per second to
reduce temporal redundancy and computational demand. By de-
fault, both the frames and the above shot-level textual descriptions
are encoded by a pre-trained CLIP [45], and the dimension of the
visual and textual embeddings is 512. For the ablation study, we fur-
ther conduct experiments using GoogleNet [49] for image encoding
and S3D [58] for both image and text encoding.

Model and hyperparameter settings. We implement the tex-
tual projector 𝑓 as a two-layer MLP and the keyframe selector 𝑔 as
a Transformer with eight heads and six encoding layers [52]. When
training 𝑓 , we apply the Adam [25] with a learning rate of 10−4 and
150 epochs. When training 𝑔, we apply the Adam with a learning
rate of 10−5 and 50 epochs, and the text-oriented alignment scores
are used. More details of our method are given in Appendix.

4.2 Quantitative and Qualitative Comparisons
Table 1 presents the experimental results of various video summa-
rization methods on the three datasets. Among the unsupervised
and self-supervised methods, our method achieves the top-2 perfor-
mance consistently in all situations. Especially in the instructional
video summarization task, our method significantly surpasses all
supervised and unsupervised baselines in F1-Score and Recall. In
particular, the precision of our method is comparable to the base-
lines. At the same time, its recall is much higher, which means
that the summaries generated by our method can cover the manual
annotations with high accuracy. These results implicitly support
our claim that self-supervised learning is a promising solution to
instructional video summarization.
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Datasets SumMe TVSum

Metrics 𝜏 𝜌 𝜏 𝜌

Human (Oracle) 0.205 0.213 0.177 0.204
DR-DSN [76] 0.024 0.029 -0.016 -0.019
SUM-GAN [34] 0.035 0.043 0.017 0.020
CLIP-It [36] 0.046 0.051 0.038 0.041
Ours 0.069 0.056 0.097 0.079

Table 2: Comparing Kendall’s 𝜏 and Spearman’s 𝜌 for generic
video summarization on the SumMe and TVSum datasets.

(a) Generic Video Summarization

(b) Instructional Video Summarization

Figure 3: Qualitative comparison for the ground-truth sum-
mary and the summaries achieved by SUM-GAN [34], DR-
DSN [76], VASNet [13], CLIP-It [36] and our method.

Our method outperforms the unsupervised and self-supervised
baselines for the generic video summarization task in most situa-
tions. Especially in the challenging “Transfer” setting, our method
achieves significant improvements compared to most baselines,
demonstrating our method’s generalization power. Additionally,
we compare our method with the baselines on the correlation co-
efficients achieved in the generic video summarization task. The
results in Table 2 further verify the superiority of our method to
its competitors. Moreover, we compute the averaged correlation
coefficient between the different manual annotations of the same
video (i.e., the “Human” row in Table 2). We can find that the corre-
lation between different manual annotations is much higher than
that between the predicted and manual annotations, which means
that taking one human’s summary as a reference, the summaries
generated by existing learning-based methods are still worse than
humans’ summaries on semantic consistency. Compared to existing
methods, our method significantly progresses in reducing the gap.

We present an evaluation of our proposed method and the base-
line approaches through user studies. For the five test videos in
split0 from the SumMe dataset, we generated video summaries
using our method, SUM-GAN [34], DR-DSN [76], and CLIP-It [36].
Five volunteers were invited to assess and vote on the complete-
ness of the summary content, camera switching, and other relevant

SUM-GAN CLIP-It DR-DSN Ours
Votes 2 5 6 12

Table 3: Comparisons on votes for various methods on test
videos of SumMe dataset.

Scoring Method SumMe (F1) TVSum (F1) WikiHow (F1)
Frame-oriented 𝒔𝑎 46.0 58.1 54.0
Text-oriented 𝒔𝑎 48.9 58.5 54.8
1 − 𝒔𝑟 45.2 59.0 54.2
Proposed 50.2 59.4 55.2

Table 4: Ablation study of scoring methods.

𝑓𝑤 𝑓𝑣 F1-Score Precision Recall
CLIP GoogleNet 43.9 43.0 46.5
S3D S3D 44.5 43.5 46.0
CLIP CLIP 50.2 49.5 51.5

Table 5: Ablation study of pre-trained embedding models.

factors for each video’s corresponding four summaries. A total of
25 votes were collected. The summarized vote counts for the four
methods are presented in Table 3. Notably, our method received
a higher number of votes compared to the other baselines. Fur-
thermore, it is worth mentioning that while CLIP-It had a higher
objective score than DR-DSN, the subjective score of DR-DSN was
rated higher than CLIP-It.

Figure 3 provides some representative summarization results.
In particular, Figure 3(a) visualizes the summaries generated by
various methods for the “video_25” in SumMe. This video portrays
a man engaging in a passing game with a dog and a bird. The
ground-truth summary shows the interactions among people, the
dog, and the bird. Our method and CLIP-It successfully capture the
highlights in the video. On the contrary, other methods either miss
important highlights or inaccurately capture non-key frames (e.g.,
blank backgrounds and uneventful scenes). Figure 3(2) shows the
summaries for the video “Make-Coleslaw” in WikiHow. This video
presents threemethods tomake coleslaw, each containing four steps.
Our method outperforms its competitors on the completeness and
accuracy of the summary.

4.3 Ablation Study
4.3.1 Rationality of Scoring Method. In the above experiments, we
generate frame-level pseudo-significance scores by (5), in which
the text-oriented alignment scores are applied. To demonstrate the
rationality of this scoring method, we consider three more settings
of the pseudo scores: 𝑖) normalized frame-oriented alignment scores,
𝑖𝑖) normalized text-oriented alignment scores, and 𝑖𝑖𝑖) one minus
normalized representation scores. We learn the keyframe selector
for each setting and report the summarization results in Table 4.
Firstly, we can find that text-oriented alignment scores yield better
performance than frame-oriented alignment scores. One reason for
this phenomenon is that the text-oriented scoring method ensures
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(a) CLIP (b) GoogleNet (c) S3D

Figure 4: The t-SNE plots of CLIP, GoogleNet and S3D visual
embeddings for the “video_14” in TVSum.

each text must be assigned to some frames with a high score. In
contrast, the frame-oriented scoringmethod can possibly miss some
textual descriptions. Secondly, the experimental results show that
jointly considering the alignment and representation scores can
improve our method’s performance.

4.3.2 Impact of Embedding Model. The pre-trained embedding
models impact the performance of our method. In the above ex-
periments, we use CLIP to encode images and texts. In Table 5, we
consider other settings and observe the following phenomena.

Firstly, when replacing CLIP with GoogleNet for the visual
modality, the performance of our method degrades. This is because
the CLIP for textual embedding and the GoogleNet for visual em-
bedding are independent pre-training models whose latent spaces
are unaligned. Using independent visual and textual embedding
models makes semantic alignment harder. As a result, it is more
difficult for us to learn a satisfactory textual projector.

Secondly, the embeddings obtained by S3D are inferior to those
of CLIP, leading to performance degradation. Figure 4 shows the
t-SNE plots of the embeddings obtained by different methods. We
can find that the clustering structure of the CLIP embeddings is ap-
parent, with each cluster representing a video shot. The GoogleNet
embeddings also have an obvious clustering structure, but they
have different distributions compared to the CLIP embeddings and
thus make the learning task harder, as aforementioned. The S3D
embeddings lack evident clustering characteristics and thus provide
little semantic guidance for video summarization.

4.3.3 Impact of Text Generator. Two captioning models, including
the Bi-Modal Transformer (BMT) model [21] and the Hierarchical
Temporal-Aware Video-Language Pre-training framework (HiTeA)
in [67], are considered as text generator. In terms of text character-
istics, the texts generated by the BMT model contain more nouns
and verbs, and the textual descriptions are more detailed, but the
accuracy of the texts is relatively low and sometimes there are
grammatical errors. In contrast, the texts generated by HiTeA are
shorter but more accurate. Table 6 shows the performance by using
the texts generated by the BMT model and HiTeA, respectively. Ob-
serving this table, we can infer that our model is robust to different
text types and performs well on both types.

4.3.4 Impact of Model Architecture. The architecture of the pro-
posed keyframe selector significantly impacts the model perfor-
mance. Besides the default Transformer-basedmodel, we implement
the keyframe selector by a Bi-directional LSTM (BiLSTM). The BiL-
STM architecture includes one linear layer and two LSTM layers,

Text generator F1-Score Precision Recall
BMT [21] 59.3 59.3 59.3
HiTeA [67] 59.4 59.5 59.4
Table 6: Ablation study of text generators.

Keyframe selector 𝑔 SumMe (F1) TVSum (F1) WikiHow (F1)
Bi-LSTM 46.3 58.3 55.0
Transformer 50.2 59.4 55.2

Table 7: Ablation study of architectures of keyframe selector.

accommodating bi-directional characteristics. Table 7 shows the
performance of the Transformer and the BiLSTM, respectively. We
can find that the Transformer-based keyframe selector works better
than the BiLSTM model. In our opinion, although both architec-
tures establish temporal dependencies between video frames, the
Transformer architecture may be more appropriate for video sum-
marization tasks because its attention mechanism assigns learnable
weights to frames explicitly, which matches well with the goal of
keyframe selection.

5 CONCLUSION
We have proposed a novel self-supervised framework for video sum-
marization based on computational optimal transport techniques.
In particular, we generate textual descriptions for video shots based
on a pre-trained cross-modal generative model and align the tex-
tual descriptions with video frames by solving an inverse optimal
transport problem. The alignment results help to design frame-level
pseudo-significance scores, which provide informative supervision
for learning the keyframe selector. Experimental results demon-
strate that our self-supervised method outperforms state-of-the-art
unsupervised and self-supervised baselines and even yields compa-
rable results to some supervised methods. In the future, we plan to
collaborate with some media platforms and test our summarization
method in real-world scenarios. Additionally, we are interested
in trying video foundation models and large language models for
caption generation. We would also like to develop a more efficient
algorithm to solve the IOT problem.
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(a) The threshold K in alignment score. (b) The threshold K' in representation score.

Figure 5: The influence of 𝐾 and 𝐾 ′ in alignment score and
representation score, respectively, on SumMe dataset.

Method Standard Augment Transfer
AC-SUM-GAN [2] 47.1 50.0 43.6
DSR-RL [43] 49.1 36.1 35.5
MSVA [18] 47.7 - -
Ours 50.2 48.8 44.9

Table 8: Quantitative results of F1-Score for generic video
summarization task on SumMe dataset.

A IMPLEMENTATION DETAILS
A.1 Bregman ADMM Algorithm
We calculate the unbalanced Wasserstein distance in (2) by ap-
plying the Bregman alternating direction method of multipliers
(B-ADMM) [33, 54, 61]. More detailed information can be obtained
in US-FGW[33].

In this study, the weight of the unbalanced regularizer is 0.5, and
the B-ADMM parameters are set to the maximum of 2000 iterations,
error bound of 1e-2, and 𝜌 of 1e-2.

A.2 The Key Shot Inference
In the experiments, some tasks require us to summarize videos in
the shot level. Therefore, we need to extend our keyframe inference
method for key shot inference. Specifically, in the testing phase,
given a video V with 𝐼 frames, we detect scene change points
by the Kernel Temporal Segmentation (KTS) method [44], which
divides the input video into𝑀 video shots. Given the frame-level
significance scores derived by our keyframe selector 𝑔, i.e., 𝒚 =

[𝑦𝑖 ] ∈ [0, 1]𝐼 , we obtain the score of each shot by averaging the
scores of the frames within the shot:

𝑦𝑚 =
1
|I𝑚 |

∑︁
𝑖∈I𝑚

𝑦𝑖 , ∀𝑚 = 1, ..., 𝑀. (8)

where I𝑚 is the set of frames within the𝑚-th shot, and |I𝑚 | indi-
cates the number of frames within the𝑚-th shot.

Given the shot-level scores 𝒚 = [𝑦𝑚] ∈ [0, 1]𝑀 , we can utilize
the 0/1 Knapsack algorithm [47] to select key shots for the video
summary, which corresponds to solve the following optimization
problem:

𝒖∗ = arg max𝒖∈{0,1}𝑀 ⟨𝒖,𝒚⟩, s.t.⟨𝒖, 𝒍⟩ ≤ 𝐿, (9)

where 𝒖∗ = [𝑢𝑚] is a binary vector indicating whether a shot is
selected or not. 𝒍 = [|I𝑚 |] ∈ R𝑀 is a vector storing the length of

the 𝑀 shots. 𝐿 is the pre-defined summary length. The problem
maximizes the overall scores of the selected shots and ensures that
the total number of their frames meets the constraint.

A.3 Implementation of the baselines
IV-Sum [35]. When implementing IV-Sum, we only use the cross-
modal saliency scores since task annotations are unavailable for the
WikiHow dataset, making IV-Sum an unsupervised method in this
case. Besides, for a fair comparison, we use the shot-level textual
descriptions generated by our method, rather than ASR texts and
the corresponding descriptions provided in the WikiHow dataset.

CLIP-It [36].When implementing CLIP-It, we follow the text
generation approach described in the original paper [36]. Specifi-
cally, we generate dense paired textual descriptions for the whole
video by applying the Bi-Modal Transformer (BMT) model [21].

B ADDITIONAL RESULTS
B.1 Robustness to Hyperparameters
We assess the robustness of hyperparameters by investigating the
influence of the threshold 𝐾 for alignment scores and the number
of considered neighbors 𝐾 ′ for representation scores. Both two
parameters are determined by multiplying a factor by the total
number of frames 𝐼 within the input video. In our implementation,
the 𝐾 and 𝐾 ′ are heuristically set to 0.8× 𝐼 and 0.5× 𝐼 , respectively.

Figure 5 illustrates how the performance of our method changes
with variations in the two parameters. Firstly, The 𝐾 serves as the
upper limit of considered frames for each text when calculating
alignment scores. Setting a large value for 𝐾 ensures the inclusion
of all relevant frames when given a video with a low frequency of
scene changes, e.g. the videos in the SumMe dataset. Secondly, the
𝐾 ′ indicates the proportion of coherent scenes within the entire
video by considering the reconstruction power of each frame with
its neighboring 𝐾 ′ frames. Increasing 𝐾 ′ leads to an enhancement
of model performance, indicating that the prevailing video distri-
bution contains a greater proportion of contiguous scenes than the
current 𝐾 ′, and vice versa. As video distribution can vary for differ-
ent datasets or data sources, these parameters need to be tailored
accordingly to achieve optimal performance.

B.2 More Quantitative Results
In addition to the baseline methods listed in Table 1, we conduct fur-
ther quantitative comparisons on the SumMe dataset, incorporating
three more methods: unsupervised methods DSR-RL[43], AC-SUM-
GAN [2], and supervised method MSVA [18]. For each of these
methods, we employ the officially published implementation codes
and keep the experimental parameters at their default settings, as
provided in the codes. The comparative results are summarized in
Table 8, where our method demonstrates superiority over these
three baselines.

B.3 Metrics Comparison
Generic video summarization datasets accompany videos with mul-
tiple user annotations, but the quality of these annotations may
vary. Even for the same video, different users may provide sig-
nificantly different summary annotations. On the TvSum dataset,
previous approaches usually compare the generated summaries
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Figure 6: Visualization on distance matrix 𝑫𝑣 and optimal
transportmatrix 𝑻 ∗ between frames and textual descriptions.

Figure 7: Comparison between ground-truth and machine-
generated summary based on “video_25” in SumMe [19].

Figure 8: Comparison between ground-truth and machine-
generated summary based on “Make-Coleslaw” in Wiki-
How [35].

Method F1-Score Precision Recall
SUM-GAN [34] 77.5 77.4 77.5
DR-DSN [76] 78.5 78.6 78.5
CLIP-It [36] 81.5 81.3 81.7
Ours 85.7 85.6 85.8
Table 9: Ablation study of “MAX” metrics.

Method Train Test Pseudo score SUM
DR-DSN [76] 90 10 - 100
SUM-GAN [34] 4866 62 - 4928
CLIP-It [36] 28033 14 - 28047
Ours 299 49 123 471

Table 10: Comparisons on runtime (seconds) for various
methods on SumMe dataset.

with each user summary and then average the multiple outputs to
obtain the final results. Since the criteria for user summaries are
not uniform, simply averaging metrics may introduce bias in the
model’s keyframe selection process by emphasizing obvious shots.

Therefore, we propose replacing the “AVG” metric with the
“MAX” metric, which only requires that the generated summary
sufficiently resembles a particular user summary rather than all
user summaries. We compare our method with some state-of-the-
art video summarization methods by using the ’MAX’ metric on
TVSum dataset, as depicted in Table 9. Our method surpasses all
baselines in all three metrics, which suggests that the summary
produced by our approach more closely aligns with a particular
user summary and thus is of higher quality.

B.4 Runtime Comparison
When testing different methods, we observe a significant difference
in their efficiency. We record the runtime of our approach alongside
three baseline methods, each trained and tested 100 epochs on
SumMe dataset. When recording the runtime of our method, we
count the time spent on training the text projection module and the
time spent on generating pseudo scores both in the “Pseudo score”
column. According to Table 10, our approach is notably faster than
SUM-GAN and CLIP-It. Specifically, our method is nearly 60 times
more efficient in comparison to the CLIP-It approach. These results
demonstrate that our proposed video summarization framework
considerably reduces the complexity and improves the training
efficiency by generating pseudo scores offline.

B.5 Visualization
Figure 6 displays distance matrix 𝑫𝑣 = [𝑑 (𝒗𝑖 , 𝒗 𝑗 )] ∈ R𝐼×𝐼 and opti-
mal transport matrix 𝑻 ∗ ∈ R𝐼× 𝐽 based on the “video_13” in TVSum.
Through 𝑫𝑣 , we can learn about the similarity between frames in
terms of content. Inspired by 𝑫𝑣 , we propose representation scores
to pick out frames that carry more information. For each text, we
can pick a small set of video frames corresponding to the text by
the alignment scores generated according to OT matrix 𝑻 ∗. Further,
we can utilize the representation scores to distinguish and filter the
video frames.

Figure 7 and Figure 8 provide qualitative comparisons between
the ground-truth summary and the machine-generated summary
for generic video summarization and instructional video summa-
rization, respectively. We also plot the pseudo-importance scores,
alignment scores, and representation scores corresponding to the
example videos. The scores are downsampled for ease of compre-
hension and trend analysis. We can find that our alignment score
accurately makes judgments about the importance of frames, with
highlights being assigned high scores and some uneventful scenes
being assigned low scores, which demonstrates the validity of our
pseudo-supervision.
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